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Statistical method for modeling Knudsen diffusion in nanopores
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This paper presents a statistical method for the calculation of gaseous flux and diffusion coefficients through
a Knudsen-regime cylindrical nanopore. A general integral formula for the flux is derived in terms of collision
frequency, molecular density, and a scattering path length probability distribution. Under appropriate steady-state
assumptions, the general formula simplifies to Fick’s first law, from which an expression for the diffusion
coefficient is derived. The model is shown to be dimensionally consistent with the Einstein relation. The
conditions for agreement with Fick’s second law are investigated. Using a model probability distribution the
model leads to an expression for the diffusion coefficient for a pore of finite length. This result is shown to
compare favorably with a classic formula from the literature.
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I. INTRODUCTION

Effectively engineered nanomaterial technologies require
theoretical determination of processes which result from
nanoscale interactions between molecules. Nanofluidic trans-
port is dominant in many emerging technologies that have
worldwide implications, e.g., water filtration and carbon diox-
ide sequestration. Diffusion through microporous membranes
with precisely tuned material qualities and structure is es-
sential to how a membrane can operate. Molecular transport
at small scales is the primary mechanism for the selective
diffusion processes seen in semipermeable fuel cell mem-
branes and gas separation devices [1]. Carbon nanotubes, [2,3]
zeolites, [4,5], silicon nanochannels, [6] and block copoly-
mers [7] are all materials currently being investigated to
fabricate these types of membranes. There is even evidence of
separation membranes being fabricated via three-dimensional
printing techniques which would introduce the precise struc-
tural control essential for nanotechnologies [8].

In an effort to expand the knowledge base for the flow of
gases in confined spaces we report here on a model that can
be used to compute the flux and a Fickian diffusion coefficient
for gaseous flow through cylindrical nanopores in the highly
rarefied, free molecular flow regime. First, a brief introduction
to current ideas in the theory of bulk gaseous diffusion and
gaseous diffusion in confined spaces is given.

Diffusion mechanics are analogous to Fourier’s law of heat
conduction, where transport of heat is proportional to the tem-
perature heat gradient. In the same way, a phenomenological
description of gaseous diffusion is defined by

J = −D
∂n

∂z
, (1)

also known as Fick’s first law, where J is molecular flux, D the
diffusivity or self-diffusion coefficient for a gaseous particle.
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n = n(z, t ) is the molecular concentration as a function of
position z and time t . Here J and D refer to a lone gaseous
species, which will continue to be the case throughout the
entirety of this report. In time-dependent systems, applying
conservation of mass naturally leads into Fick’s second law:

∂n

∂t
= D

∂2n

∂z2
, (2)

which is sometimes called the diffusion equation.
It can also be shown that D = 〈z(t )2〉/2t, which is of-

ten referred to as the Einstein relation, where 〈z(t )2〉 is the
mean displacement squared, as a function of elapsed time.
The self-diffusivity of the a gaseous species can alternatively
be calculated using kinetic theory where D = 1

3λv̄ [9]. The
factors λ and v̄ are the familiar expressions for mean-free path
and mean speed, respectively:

λ = kbT√
2Pπdi

2
, (3)

v̄ =
√

8kbT

πm
, (4)

where kb is the Boltzmann constant, P is the gas pressure, T is
the temperature, di is the effective diameter of the gas particle,
and m is particle mass (Ref. [9], pp. 873, 869).

In porous membranes, the diffusivity is often modified to
take into account the effects of membrane design and struc-
ture. If the diffusion coefficient for a gaseous particle within a
single pore is given by Di, then the effective diffusivity, Deff ,
for the membrane is computed as

Deff = ε

τ
Di, (5)

where porosity, ε, is the fraction of membrane surface area
containing pores and the tortuosity factor, τ , is a unitless
parameter that accounts for the twisting and turning of oth-
erwise straight pores. τ � 1 where τ = 1 for a pore without
geometric disorder, for example, a uniformly cylindrical pore
with circular cross section [10].
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It is useful to consider the Knudsen number, Kn. Let d
be the pore diameter, then Kn = λ/d [11]. Knudsen diffusion
describes the transport of molecular particles through a pore
of exceptionally narrow diameter, i.e., for Kn � 1, for the
highly rarefied situation where intermolecular collisions can
be neglected and all momentum transfer processes occur at
the pore wall. In Knudsen’s original analysis for flow within
this regime, the physical mechanism of particle-wall interac-
tion is concealed by assuming purely diffuse reflections for
pores of infinite length. The diffusion coefficient under these
conditions is [12,13]

Dk = 1
3 v̄d. (6)

When Kn ∼ 1 intermolecular collisions near the pore center
transfer momentum away from diffusing molecules, reducing
the overall diffusivity, the so-called transition regime. Diffu-
sivity can be computed in this regime by using the Bosanquet
approximation [14]:

1

Dt
= 1

D
+ 1

Dk
, (7)

where D is the bulk gas phase diffusion coefficient and Dt

is the transition regime diffusion coefficient. As Kn decreases
further, other diffusion contributions arise from viscous or
Poiseuille flow and surface flow, which combine additively
with the transition diffusion coefficient to form a bulk diffu-
sivity, Db, which can be approximated by

Db = Dt + K

(
1 − ε

ε

)
Ds + Dp, (8)

where K is a dimensionless absorption equilibrium constant
and Ds is surface flow diffusivity [15]. Viscous diffusivity is
defined by Poiseuille flow as Dp = Pdi

2/32η where η is the
viscosity.

Modeling and simulation of free-molecular mass transport
through confined spaces have experienced few milestones
since the original analysis of Knudsen. Pollard, and Present
proposed a model that predicted Knudsen diffusivity for a
pore of finite length which converges to the Knudsen result
for infinite pores [13]. More recently, the research group
of Bhatia, Nicholson, and co-workers have made additional
progress [16–18]. The theory put forth by this group considers
the motion of a fluid molecule in a cylindrical pore driven
by a chemical potential gradient under the influence of a
Lennard-Jones potential field originating from the pore wall.
The diffusion coefficient Dto is calculated using the mean
oscillation time 〈t〉 in seconds, extracted from simulation
trajectories as

Dto = kbT

m
〈t〉. (9)

Accommodation of viscous contributions is accomplished by
superimposing a surface diffusivity term, calculated using
simulated density profiles. Other recent modeling innovations
include the direct simulation Monte Carlo method and the test
particle method [19].

In this report an alternative method is presented whereby
the flux and a Fickian diffusion coefficient for Knudsen dif-
fusion, within cylindrical nanopores of circular cross section,

FIG. 1. Diffusing particles within a cylindrical nanopore of per-
fect circular cross section of infinite length where a coordinate
system, a differential volume, and a flux plane are depicted.

can be estimated. Rather than using conservation of momen-
tum or mean times between collisions the theory makes use
of a probability distribution for axial scattering path lengths.
Under certain simplifying assumptions the model is shown to
be consistent with Fick’s first law, and the Einstein relation
for any finite probability distribution function that vanishes at
+∞. Conditions for agreement with Fick’s second law are de-
termined. To further demonstrate the method, an exponential
distribution function is employed and an expression for the
Knudsen diffusion coefficient is arrived at for a pore of finite
length. This formula is shown to have similar behavior to that
of a classic result from the literature.

II. THEORY

Consider a single cylindrical nanopore with perfect circular
cross section of infinite length through which gas molecules
are diffusing at constant temperature in the Knudsen regime.
As depicted in Fig. 1, an axial coordinate z is positioned
within the nanopore of radius R, and a flux evaluation plane is
placed at an arbitrary location zo which may or may not be at
the origin for the coordinate system, z = 0. A differential disk
of thickness dz is placed within the nanopore at an arbitrary
coordinate z. In the Knudsen regime, a differential volume
will almost certainly contain no particles, except for instances
where a particle transits through. The differential volume is
implicitly monitored for a sufficient amount of time, where
sufficient is defined as long enough to accurately capture
the number of particles contained at that location, but short
enough such that the transient changes of the macroscopic
diffusion remain negligible over the time interval.

The infinitesimal number of particles, dN within dV is
calculated by multiplying dV by particle number density
n(z, t ):

dN = πR2dzn(z, t ). (10)

Each dV within the pore has some number of particles that
uniquely originated from that location, enumerated by identi-
fying how many particles undergo a collision with the wall;
for example, see Fig. 2. Each particle is characteristic of the
location of the last wall collision, a location unique for each
particle.

We begin by assuming that all particles in the system have
the same translational energy E . For example, this could be
the mean energy from the kinetic theory of gases: (1/2)mv̄2.
Effects for a distribution of energies will be considered later.
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FIG. 2. Particles traveling in relation to dV over a small time
interval within a pore of infinite length. Trajectory 1 constitutes a
particle that is unique and characteristic to dV due to its collision
with the wall, while 2 does not.

The rate at which particles collide with the wall is computed
by multiplying the number of particles, Eq. (10), by the mean
collision rate for a single particle, denoted by ξ . Define d ḟ
as the particle-wall collision rate infinitesimal for particles
contained in dV , computed by

d ḟ (z, t, E ) = ξdN, (11)

which is equivalent to the rate of particles exiting the volume.
A particle originating from dV will contribute to flux

through the plane if it travels so that its next collision is at
the flux plane or at any location farther beyond the plane. For
example, the solid trajectory lines in Fig. 3 illustrate possible
paths for a particle originating from dV that contribute to the
flux. Each potential trajectory can be assigned a probability
of occurrence, from which a probability distribution function
(PDF) can be assembled [which, e.g., could be calculated from
molecular dynamics (MD) simulations]. To do this, the par-
ticular interaction conditions between the gaseous molecule
and the pore wall would need to be considered. In this work
no attempt is made to generate a PDF for a specific gas-pore
system, so the details of the molecule and pore wall interaction
are not discussed. However, the required properties of the PDF
that allow the model to be consistent with known laws of
diffusion are determined.

FIG. 3. Identification of potential intercollision trajectories
within a pore of infinite length. Axial intercollision distance is de-
noted by λ, and solid lines represent possible trajectories originating
from dV where the particle successfully contributes to flux through
the flux plane.

The probability of a particle traveling an intercollisional
axial distance λ is expressed by a PDF: Pl (λ) dλ. Here λ

should not be confused with the symbol’s previous use in
Eq. (3) for the gas phase mean-free path. However, as illus-
trated in Fig. 3, a contribution to flux is satisfied not only by
a particle traveling to the flux plane, but also to any location
beyond the plane. Therefore, the more relevant quantity is a
cumulative sum of probabilities, i.e., a cumulative distribution
function (CDF). Since the PDF is dependent on the relative
location of dV and the flux plane (i.e., the PDF may not be
symmetric), the formal definition of the CDF, C, must be a
piecewise function that reflects that dependency. For the flux
plane at zo we have

C(z, zo) =
{

if z � zo
∫ ∞
λ=z−zo

Pl (λ) dλ

if z � zo
∫ λ=z−zo

−∞ Pl (λ) dλ
, (12)

where we have used the notation C = C(z, zo) to denote that C
has its origin at z = zo the flux plane, unlike the density n(z, t )
with its origin at z = 0.

Let dṄ denote the particle contribution rate infinitesimal
from dV to the flux plane, calculated by multiplying the
wall collision rate with the CDF: dṄ = d ḟ (z, t )C(z). The
total particle contribution rates for the rightward and leftward
directions can be obtained by appropriately integrating dṄ
over the length of the nanopore. For example, the rightward
progressing particle contribution rate would be computed
by ṄR = ∫ zo

−∞ dṄ , and the analogous integration from zo to
infinity is done to compute ṄL:

ṄR = πR2ξ

∫ zo

−∞
n(z, t )C(z, zo) dz, (13)

ṄL = πR2ξ

∫ ∞

zo

n(z, t )C(z, zo) dz. (14)

Net particle flux J is defined traditionally as J (zo, t ) = (ṄR −
ṄL )/πR2. Replacing z by 2zo − z in the above expression for
ṄR, and using a known property of definite integrals, we can
combine the two integrals into one. The resulting equation for
net flux is then

J (zo, t ) = ξ

∫ ∞

zo

[n(2zo − z, t )C(2zo − z, zo)

− n(z, t )C(z, zo)]dz, (15)

where J is the time-dependent net particle flux at zo for
constant ξ .

It is desirable to consider Eq. (15) for particles of different
translational energies. Letting ξ = ξ (E ) and C = C(z, t, E )
and multiplying the right side of Eq. (15) by f (E )dE , where
f (E ) is a normalized energy distribution function, we get

dJ (z, t, E ) = ξ (E ) f (E ) dE
∫ ∞

zo

[n(2zo−z, t )C(2zo−z, zo, E )

− n(z, t )C(z, zo, E )]dz. (16)

The total flux across all translational energies is then

J (zo, t ) =
∫ ∞

0

{
ξ (E ) f (E )

∫ ∞

zo

[n(2zo−z, t )C(2zo−z, zo, E )

− n(z, t )C(z, zo, E )]dz

}
dE . (17)
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To use Eq. (17) the collision frequency and the PDF would
need to be estimated analytically or via simulation. Then, the
number density and translational energy distribution would be
specified. A straightforward integration of Eq. (17) would then
provide flux, from which diffusivity can easily be calculated.
However, certain simplifications allow Eq. (17) to be cast
into a more manageable form, though with loss of generality.
The process of making these simplifications sheds light on
the physical significance of the formula, enables comparison
to existing more restrictive theory, and reveals that for the
steady-state case a diffusion coefficient can be directly com-
puted given a PDF and collision frequency.

III. SIMPLIFICATION

A. Symmetric PDF

The shape of the PDF will depend on the geometry of
the pore wall and the particle-wall interaction. However, the
evaluation of Eq. (15) is simplified by considering a pore
of uniform geometry and particle-wall interaction. Symmetry
of the PDF implies mathematical evenness, so Pl (λ, E ) dλ =
Pl (−λ, E ) dλ. Using this simplification, Eq. (12) reduces to

C(z, zo) =
∫ ∞

λ=|z−zo|
Pl (λ) dλ, (18)

which is now used in the simplification of Eq. (15). Replac-
ing z with 2zo − z in Eq. (18) demonstrates that C(2zo −
z, z, E ) = C(z, zo, E ), and the subsequent flux formula of
Eq. (15) can be written as

J (zo, t ) = ξ

∫ ∞

zo

[n(2zo − z, t ) − n(z, t )]C(z, zo) dz. (19)

B. Steady-state diffusion

Many important diffusion problems occur under conditions
of steady state. Assuming time-independent conditions and a
uniform translational energy distribution Eq. (15) is simplified
to

J (zo) = ξ

∫ ∞

zo

[n(2zo − z) − n(z)]C(z, zo) dz, (20)

where J (zo) is the flux at any location zo in the pore.
Equation (20) can be used to shed light upon the nature of n

during steady-state conditions. During steady-state conditions
the molecular flux through the plane will be the same at all
locations within the pore. Flux is equated for two arbitrary
locations within the pore: z = 0 and z = zo. Using these two
locations in the integral of Eq. (20) and equating leads to∫ ∞

0
[n(−z) − n(z)]C(z, 0) dz

=
∫ ∞

zo

[n(2zo − z) − n(z)]C(z, zo) dz. (21)

By shifting the coordinate z in the functions on the right of
Eq. (21) by zo it becomes possible to match the limits of the
integrals and thus equate the integrands. This leads to n(−z) −
n(z) = n(zo − z) − n(zo + z), and thus in this case C(z, 0) =
C(z + zo, zo). A Taylor series expansion is performed on all
four terms: n(−z) and n(z) are expanded about 0. n(zo − z)

and n(zo + z) are expanded about zo. Grouping like terms and
simplifying results in[

dn

dz

∣∣∣∣
0

z− dn

dz

∣∣∣∣
2zo

(z − zo)

]
+

[
d3n

dz3

∣∣∣∣
0

z3

3!
− d3n

dz3

∣∣∣∣
2zo

(z−zo)3

3!

]

+
[

d5n

dz5

∣∣∣∣
0

z5

5!
− d5n

dz5

∣∣∣∣
2zo

(z − zo)5

5!

]
+ · · · = 0. (22)

For Eq. (22) to be true, all pairs of derivatives must vanish for
any choice of zo location, necessitating constant value deriva-
tives. If any higher order derivatives are nonzero constants,
then lower order derivatives will no longer be constants.
Therefore all higher order derivatives must be zero, and to
avoid the trivial solution, the first-order derivative is assigned
a nonzero constant, i.e., dn/dz = constant. Thus, for steady-
state flow through a pore the number density will be linear:
n(z) = dn

dz z + no, where no will be a constant defined by the
number density at the flux plane. Entering this expression for
n(z) into Eq. (20), setting the flux plane location to zo = 0 and
letting C(z, 0) = C(z), yields

J = −2ξ
dn

dz

∫ ∞

0
zC(z) dz, (23)

which computes steady-state particle flux by assuming a sym-
metric PDF and uniform translational energy. In other words,
given the flux plane at zo = 0 along with a symmetric PDF,
one is only required to integrate the PDF over all positive
space and multiply by two as seen by Eq. (23). Therefore,
the steady-state and particle-independent energy expression
for the CDF is then

C(z) =
∫ ∞

|z|
Pl (λ) dλ. (24)

Additionally, by inserting the energy-dependent form of
ξ and C, along with an energy distribution f (E ) dE into
Eq. (23), one can then get a steady-state flux or diffusion
coefficient over all translational energies of the distribution.

IV. ANALYTICAL VALIDATION OF FLUX FORMULA

A. Agreement with Fick’s first law

Analytical validation is performed by examining the math-
ematical behavior of the formula under simplifying assump-
tions and observing if the results are in accord with exist-
ing theory and expectations. In this section conditions for
agreement between Eq. (23) and Fick’s first law and the
Einstein relation will be discussed. We will show that any
CDF, that is finite for z over [zo,∞) and vanishing at +∞ will
permit agreement between Eq. (23) and Fick’s first law. This
implies that the PDF must be finite over the same interval.
Additionally, a CDF that yields agreement between the model
and Fick’s second law is determined in the subsequent section.

Continuing here as in the previous section with zo = 0 and
upon inspection of Eq. (23) it is seen that a flux is written
in terms of a constant multiplied by a density gradient. This
constant is then the Fickian diffusion coefficient Dnew. Using
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Eq. (24) in (23) this constant is then

Dnew = 2ξ

∫ ∞

0
z

[∫ ∞

|z|
Pl (λ) dλ

]
dz, (25)

so that Eq. (23) can be written as J = −Dnew
dn
dz , i.e., Fick’s

first law.
Equation (25) is also in dimensional agreement with the

Einstein relation. The equation relating the diffusion coeffi-
cient to the square of mean spatial displacement is generally
known as Einstein’s relation. The one-dimensional result, for
a particle located at the origin at time zero, is

D =
1
t 〈z2(t )〉

2
. (26)

Finite Pl integrates to C(z) and Eq. (25) becomes

Dnew = 2ξ

∫ ∞

0
zC(z) dz. (27)

ξ in Eq. (27) has dimensions inverse time while the integral
has dimensions distance squared so that Eq. (25) is dimension-
ally consistent with the Einstein relation for any finite PDF.
This can be shown more directly for a specific case. To do this
we consider the following PDF:

Pl = ae−aλ, (28)

where a is a constant. Using Eq. (24) this leads to the corre-
sponding expression for the CDF:

CEo (z) = e−az. (29)

Using this in Eq. (27) leads to

Dnew = 2ξ

a2
. (30)

From Eq. (26) the factor 〈z2(t )〉 is the average displacement
squared, which is similar in physical meaning to 1/a2 as
defined by Eq. (28). The factors ξ and 1/t also have corre-
sponding units.

B. Agreement with Fick’s second law

We now investigate under what conditions the integral
equation of Eq. (19) obeys Fick’s second law. For convenience
we study the flux J as a function of the flux plane position zo

and time t . Here it will be shown that the CDF is a function of
position and time during the non-steady-state period. Equation
(19) is again

J (zo, t ) = ξ

∫ ∞

zo

[n(2zo − z, t ) − n(z, t )] C(z, zo) dz, (31)

We examine the time-dependent behavior of J and n where
the initial density is given by a step function. That is, n = no,
where no is a positive constant, for z < 0 and n = 0 for z �
0 for z over the interval (−∞,∞). In this case the unique
solution for Fick’s second law is given by

n(z, t ) = 1

2
√

πDt

∫ ∞

−∞
exp

[
− (z − ζ )2

4Dt

]
n(ζ , 0) dζ , (32)

for t > 0, where D was determined from the steady-state
situation and n(ζ , 0) is the initial condition for n(z, t ) [20].

Computing Eq. (32) for this case yields

n(z, t ) = no

2
erfc

[
z

2
√

Dt

]
. (33)

Inserting into Eq. (31) leads to

J (zo, t ) = ξno

2

∫ ∞

zo

(
erfc

[
2zo − z

2
√

Dt

]
− erfc

[
z

2
√

Dt

])

× C(z, zo) dz. (34)

Now by using Eq. (33) in Fick’s first law, i.e., Eq. (1), the flux
can be computed and written in terms of zo:

J (zo, t ) = no

2

√
D

πt
exp

[
− zo

2

4Dt

]
. (35)

Equating (34) and (35) leads to

no

2

√
D

πt
exp

[
− zo

2

4Dt

]

= ξno

2

∫ ∞

zo

(
erfc

[
2zo − z

2
√

Dt

]
− erfc

[
z

2
√

Dt

])
C(z, zo) dz,

(36)

A possible solution for Eq. (36) is when C = C(z, zo, t ), that
is C is a function of position, relative to the flux plane, and
time. Therefore, the following is a solution:

C(z, zo, t ) = (z − zo) exp
[ − (z−zo)2

4Dt

]
β
(

erfc
[ 2zo−z

2
√

Dt

] − erfc
[

z
2
√

Dt

]) , (37)

where β is a factor that does not involve z. Using Eq. (37) in
(36) gives

no

2

√
D

πt
exp

[
− zo

2

4Dt

]
= ξno

2β

∫ ∞

zo

(z−zo) exp

[
− (z−zo)2

4Dt

]
dz.

(38)

The integral on the right side of Eq. (38) yields 2Dt . We
have an equality when β is of a particular form and has
dimensions of distance. Since we require the PDF to be
normalized, it must be that C = 1 as z → zo thus leading
to β = (

√
πDt/2) exp [z2

o/4Dt]. This implies that Eq. (38) is
true when ξ = 1/4t .

It is interesting to consider certain attributes of the function
C given by Eq. (37). C in the form of Eq. (37) has a bell
curve shape. Its origin is a function of the flux plane location;
however, its width is also a function of the flux plane location.
This has the effect of causing the width of the bell curve to
decrease when the flux plane is moved to regions with lower
flux at a particular time. CDF curves for an example case are
sketched in Fig. 4 for three different flux plane locations. Thus
we can see one of the principle features of the steady-state
PDF: Knudsen diffusivity differences, for different gaseous
species within identical pores of equivalent density profile, are
accounted for by each having a unique PDF. In other words,
as the flux decreases, the probability spectrum becomes dom-
inated by shorter scattering path lengths, and in turn the
diffusion coefficient determined by Eq. (25) decreases. As
time increases, the bell curve of Eq. (37) spreads out. Finally
as t → ∞, C → 1 for all z.
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FIG. 4. CDF curves for three different flux plane locations at
a fixed time given the initial condition of a density step function
as discussed in this section. Flux is given by the dashed curve.
Parameters were set to D = 1.0 (cm2/s), t = 1.0 s, and no = 1.0 ×
104 cm−3. Locations of the flux plane are zo = 1.0 cm, 2.5 cm, and
4.0 cm.

One might expect that the steady-state case of Eq. (25)
would be the most commonly considered situation. Here any
CDF, with the properties mentioned in Sec. IV 1, used within
Eq. (23) would be mathematically consistent with Fick’s first
law and give a finite result for J . In the next section a
convenient PDF, with the required mathematical properties,
is used derive a formula for the Knudsen diffusion coefficient
within a pore of finite length.

V. APPLICATION

Though the true PDF is unknown, and would need to be
estimated via simulation or analytic methods, we can examine
the validity of the model further by utilizing a model distri-
bution function that has convenient mathematical properties.
The study of Eq. (25) is then continued in this section using
an exponential PDF. In addition to its favorable mathematical
properties, this type of distribution is known to describe the
distribution of mean-free path lengths between scattering in
bulk gases [21]. Using this distribution function an expression
for the Knudsen diffusion coefficient is arrived at for a cylin-
drical pore of circular cross section of finite length. It is then
shown that this result is in general agreement with a classic
formula derived by Pollard and Present for highly rarefied
gaseous flow through a cylindrical pore of finite length [13].

Let the length of the pore be l and the diameter be d . Let
the normalized distribution function for axial path lengths that
contribute to flux through the flux plane be given by

Pl (λ) = ae−aλ, (39)

where a is a constant that will be shown to depend upon the
pore diameter d . Here the axial distance along the pore will
be given by z. The flux plane is set at the center of the pore,
i.e., zo = 0. Therefore n = z(dn/dz) + no with no being the
density at the flux plane. We let the collision frequency be
approximated as v̄/d . Equation (25) can then be written as

Dnew = 2v̄

d

∫ l/2

0
z

(∫ ∞

z
ae−aλ dλ

)
dz. (40)

The infinite limit is retained in the inner integral for simplicity
assuming that the distribution function is negligible for λ >

l/2. On computing the integrals in Eq. (40) and rearranging,
the result is

Dnew = 2v̄

a2d
[1 − e−al/2(l + al/2)]. (41)

A value for a is arrived at by considering Dnew for the pore of
infinite length. One finds that lim l→∞Dnew = 2v̄/a2d . This
is equated to the Knudsen result of Eq. (6), which leads to
a = √

6/d , so that the final formula for Dnew is

Dnew = 1

3
v̄d

[
1 − e−

√
6l

2d

(
1 +

√
6l

2d

)]
. (42)

Equation (42) is now compared to another well-known result
from the literature for a gas diffusing under the same con-
ditions in a cylindrical pore of finite length and diameter d .
Pollard and Present give [13]

DPP = 1

3
v̄d

[
1 − 3

4

d

l

]
. (43)

We can show the similarity of Eqs. (42) and (43) by
rearranging and factoring Eq. (42) to get

Dnew = 1

3
v̄d

{
1 − 3d

4l

[(
4l

3d
+ 4

√
6l2

6d2

)
e−

√
6l

2d

]}
. (44)

The expression in square brackets of Eq. (44) can be thought
of as a positive factor of less than one by which the correction
term in the Pollard and Present formula is adjusted. For
example, when l = d this factor is ∼0.85.

The behavior of these formulas can be further studied by
considering plots as l varies for a fixed diameter d . This is
depicted in Fig. 5. Both Eqs. (42) and (43) converge to the
Knudsen result as l → ∞. Additionally, the formulas both
give decreasing values for D as l gets small.

D
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FIG. 5. Estimated Knudsen diffusion coefficients vs pore length
l for a fixed diameter of 200 Å for He at 300 K. Value from
the Knudsen formula, Eq. (6), (Dk), is the horizontal dashed line.
Equation (43), (DPP), is the lower dashed curve. Equation (42),
(Dnew), is shown by the solid curve.
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FIG. 6. Estimated Knudsen diffusion coefficients vs pore diam-
eter d for a fixed length of 200 Å for He at 300 K. Equation (42),
(DPP), is the lower dashed curve. Equation (43), (Dnew), is shown by
the solid curve.

The behavior of each formula as d varies for fixed l is
depicted in Fig. 6. As expected, both go to zero as d gets small.
Also, both expressions show a maximum in D at d ∼ l/2, and
Eq. (43) gives D falling to zero when d ∼ l , while Eq. (42)
shows that D → 0 as d → ∞.

It is unknown to the authors which of Eq. (42) or (43)
would provide the best match for experimental data in the
region where l ∼ d . Reports for diffusion coefficients of lone
gaseous species in nanopores known to the authors [6,22,23]
are all for cases when l � d and thus in the region where
both expressions converge to the Knudsen result of Eq. (6).
Additional experimental work on very thin porous membranes
is thus encouraged.

VI. CONCLUSION

In this report a model is presented whereby flux and a dif-
fusion coefficient can be computed for Knudsen diffusion in a
cylindrical pore. The method utilizes a probability distribution
for particle-scattering axial path lengths. Using a simplified
version of the model it is demonstrated how it is consistent
with Fick’s first law and the Einstein relation for a certain class
of distribution functions. The CDF that allows the model to
agree with Fick’s second law was determined, thus revealing
that as the flux decreases the CDF becomes dominated by
shorter path lengths. A model for the probability distribution
is employed, and a formula for the diffusion coefficient for
a pore of finite length was determined. We study how the
resulting formula behaves for different pore diameters and
lengths. The expression is shown to exhibit behavior similar to
that of a well-known formula from the literature for Knudsen
diffusion in pores of finite length. Having verified that the
theory leads to results which are consistent with classical laws
of diffusion and other well-established relations, there are
now opportunities for future work. Using MD or analytical
methods one could directly compute the PDF and collision
frequency for a particular pore and gaseous species at a mean
energy or over a particular energy spectrum. Another possibil-
ity is to write the PDF as an unknown function parameterized
in terms of the physical properties of the system. Then, given a
known diffusion coefficient, one could adjust parameters until
Eq. (25) yields the known value.
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