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A theory for the intermediate stage of crystal growth, where two defining equations one for population
continuity and another for mass-balance, is used to study the kinetics of the supersaturation decay, the
homogeneous nucleation rate, the linear growth rate and the final distribution of crystal sizes for the
crystallization of bovine and porcine insulin from solution. The cited experimental reports suggest that
the crystal linear growth rate is directly proportional to the square of the insulin concentration in solu-
tion for bovine insulin and to the cube of concentration for porcine. In a previous work, it was shown that
the above mentioned system could be solved for the case where the growth rate is directly proportional
to the normalized supersaturation. Here a more general solution is presented valid for cases where the
growth rate is directly proportional to the normalized supersaturation raised to the power of any positive
integer. The resulting expressions for the time dependent normalized supersaturation and crystal size
distribution are compared with experimental reports for insulin crystallization. An approximation for
the maximum crystal size at the end of the intermediate stage is derived. The results suggest that the lar-
gest crystal size in the distribution at the end of the intermediate stage is maximized when nucleation is
restricted to be only homogeneous. Further, the largest size in the final distribution depends only weakly
upon the initial supersaturation.

� 2017 Published by Elsevier B.V.
1. Introduction

The growth of protein crystals from solution continues to be the
preferred way to obtain samples for X-ray diffraction investiga-
tions. Continuing study of the intermediate crystal growth stage
is important for further understanding of the conditions that lead
to the creation of high quality crystals of desirable size. The inter-
mediate growth stage commences after the initial induction time
period where though the solution is supersaturated there is no
detectable decrease in solute concentration and ends when the
solute concentration has decayed to the solubility limit. After this
stage ripening effects sometime occur where certain crystals in
the solution still continue to grow at the expense of the others.

A useful theory for the intermediate stage of batch crystal
growth proposes the use of a population-continuity equation for
unit volume of solution:

@f ðt; LÞ
@t

þ @ðGðtÞf ðt; LÞÞ
@L

¼ 0 ð1Þ
Here f is the distribution of crystal sizes. Constant temperature
and pressure are assumed during growth. Consider the density N of
spherical crystals of radius L present in the solution at time t, then,
f = dN/dL. G is the linear growth rate taken to be only dependent
upon time, i.e. it is assumed that McCabe’s DL law holds and that
the growth rate is independent of size [1].

Another equality is required to completely define the system,
that of mass-balance:

dsðtÞ
dt

¼ �K
Z 1

0
L2Gf dL ð2Þ

Here s is the normalized supersaturation. The constant K = 4 p q/
(co � cs), where 4 p is an area shape factor, q the crystal density, co
the initial solute concentration and cs the solubility.

Using a model where the linear growth rate is directly propor-
tional to the normalized supersaturation, and the homogeneous
nucleation rate is given by the model of Mier, an approximate solu-
tion for the above system was derived [2] and later used to study
the von Weimarn crystallization rules for supersaturated solutions
[3]. Continuing with the approach taken in Ref. [2], Alexandrov and
Malygin [4] derived a complete series solution for the supersatura-
tion as a function of time and for the size distribution function.
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Assuming that the distribution function is separable and that the
growth rate is directly proportional to the normalized supersatura-
tion, a solution was found for Eqs. (1) and (2) which in turn yields
the nucleation rate rather than it being given as a boundary condi-
tion. These results were then used to describe the kinetics of crys-
tal growth for the proteins lysozyme and canavalin [5]. Recently,
modified versions of Eqs. (1) and (2) were used to study the inter-
mediate stage of growth with the added allowance for buoyancy
effects and growth rate fluctuations [6,7], issues that are ignored
in this study.

In Schlichtkrull’s important work on insulin crystallization [8,9]
measurements were reported not only for the concentration of
insulin in crystalline form at various times during batch growth
but also for the distribution of sizes at periodic intervals and at
equilibrium, i.e. at the end of the intermediate stage. This data
was collected at constant temperature and pressure. These data
were given for both bovine and porcine insulin. Reports of this
type, where both kinetic data for the supersaturation decay and
crystal size distributions are given, are rare in the protein crystal
growth literature. In these reports, the author considers the time
evolution of the dissolved insulin concentration in solution during
crystal growth and through a curve fitting scheme suggested that
the linear growth rate was proportional to the square of solute con-
centration for bovine insulin crystal growth and to the cube of
solute concentration for porcine. This motivated us to search for
a solution for the above system for the case where the growth rate
was proportional to the normalized supersaturation raised to the
power of a positive integer greater than one. Assuming growth
occurs where the rate limiting step is incorporation and not bulk
diffusion, i.e. the kinetic regime, we propose here a growth rate in
the form of a power law where the exponent is not limited to
one as was the case in the previous work with Eqs. (1) and (2). Here
a solution is determined for the case where the exponent is any
positive integer. This result yields expressions for the time depen-
dent normalized supersaturation, the size distribution function,
the nucleation rate and an approximate expression for the largest
crystal size at equilibrium.

These expressions are then compared with experimental data.
Converting the concentrations during growth from the experimen-
tal reports to normalized supersaturation, these data are compared
to the theoretical result. We find that the theory describes the
kinetics of the reported solute concentration for the case where
the growth rate is proportional to the square of the normalized
supersaturation for both bovine and porcine insulin. The form of
the theoretical size distribution function is equivalent to an
expression proposed in the experimental reports. Interpretation
of this theoretical distribution function is further clarified by dis-
cussion of the possible modes of nucleation.

Schlichtkrull [8,9] reported that in addition to homogeneous
nucleation, heterogeneous nucleation was present during the
growth runs originating on the container surfaces and faces of
the crystals themselves. Through a set of batch growth experi-
ments, where steps were taken to reduce heterogeneous nucle-
ation, so that homogeneous nucleation is the dominant form, it
was found that the logarithm of the cumulative distribution in size
data versus crystal size lies generally along a straight line of nega-
tive slope. Further, these results indicate that when heterogeneous
nucleation is present three changes occur relative to the homoge-
neous nucleation dominated growth case even when both runs had
equal initial supersaturation: First, the logarithm of the cumulative
distribution data versus L is no longer linear for all L. Secondly, at
equilibrium, the total number of crystals per unit volume in the
solution are increased. Finally, the largest crystal size in the equi-
librium distribution is reduced.

We compare our theoretical results with the two reported insu-
lin growth runs for which data, for the percent of solute converted
to solid at a given time, are given: bovine insulin from Ref. [8] and
porcine insulin from Ref. [9]. The bovine growth run was from a
buffered saline solution while porcine was crystallized from a
sodium citrate and acetone solution. Also, data for the cumulative
size distribution versus crystal size at equilibrium was given as a
plot for both growth runs. This data lies along a straight line of neg-
ative slope except for the larger crystal sizes, around 100 lm, were
it tends to tail downward. As discussed above, this is apparently
due to the influence of heterogeneous nucleation during growth.
Since our theory yields a distribution function, the logarithm of
which is linear versus L for all L from 0 to the maximum size Lmax,
we suggest that it describes insulin crystal batch growth from solu-
tion with only homogeneous nucleation. By comparing our results
for s(t) to the data mentioned above, using mass conservation and
using the experimental estimate for the initial growth rate, we are
able to determine all of the unknown parameters and develop use-
ful expressions for what we entitle an idealized homogeneous nucle-
ation model applicable for batch insulin crystal growth from
solution. As expected, we find the model predicts the total number
of crystals in the solution at equilibrium are less than reported and
the largest crystal size is greater than reported. This result leads us
to suggest that the largest possible crystal sizes from insulin crystal
growth at the end of the intermediate stage are obtained when
nucleation is restricted to be of the homogeneous type.

This idealized model leads to an approximate expression for the
largest crystal size at equilibrium. According to the proposal above
this result gives a theoretical maximum possible crystal size imme-
diately after the intermediate stage of batch growth. In the result-
ing expression, the largest crystal size at equilibrium is directly
proportional to the inverse hyperbolic cosine of the cube root of
the initial supersaturation so that beyond a certain size, large
changes in the initial supersaturation produce only small changes
in the largest maximum size at equilibrium. In the above men-
tioned experimental reports for bovine and porcine insulin batch
crystallization the initial supersaturation in the porcine case was
more than double that of the bovine with the largest crystal size
at equilibrium in each case being nearly identical.
2. Solution of the governing equations

As suggested in previous work [5,8] we take that the distribu-
tion function f is separable in radius L and time t such that

f ðt; LÞ ¼ TðtÞlðLÞ: ð3Þ
Schlichtkrull reported that insulin crystallizes in a rhombohe-

dral shape and reported the diagonal length of the crystal as
viewed from above. We take this length to be twice our radius
L. Ootaku et al. [10] reported that porcine insulin crystals took
the shape of cubes, dodecahedrons and rhombohedrons. We
assume that all crystals considered by Schlichtkrull were rhombo-
hedral as depicted in Ref. [10]. Therefore, all crystals have a
uniform shape factor and one dimension of the particle, for us L,
will characterize the size of all crystals in the assembly.

The linear growth rate, G = dL/dt, is assumed of the form given
by Christiansen [11]:

G ¼ asp ð4Þ
where p is a positive integer and a is a constant. The time depen-
dence for G comes through s the normalized supersaturation,

sðtÞ ¼ cðtÞ � cs
co � cs

: ð5Þ

c(t) is the time dependent concentration of the solute. It is seen
from Eq. (5) that s = 1 at the start of the intermediate stage (t = 0)
and as t?1, s? 0. One should not take this limit too literally



10 D.A. Barlow / Journal of Crystal Growth 470 (2017) 8–14
since the end of the intermediate stage is when c(t) � cs first
becomes undetectably small. In the experimental work considered
here the end of the intermediate stage is taken to be at the time of
the last concentration value given in the data set: 1400 min for
both bovine and porcine insulin.

Using Eqs. (3) and (4) in Eq. (1) we arrive at the following ordi-
nary differential equation:

1
T
dT
dt

1
asp

¼ �1
l
dl
dL

: ð6Þ

Both sides of Eq. (6) equal the same constant k. The solution for l
(L) is,

lðLÞ ¼ Ce�kL ð7Þ
where C is a constant. This is identical to the result for the case
where p = 1, [5], the same form as recommended by Schlichtkrull
[8] and a similar expression has also been found to describe the dis-
tribution of crystal sizes during continuous crystallization from
solution [1].

To show the solution for the temporal side of Eq. (6) we begin
by defining the homogeneous nucleation rate J as

J ¼ Gf ðt; 0Þ: ð8Þ
In light of Eqs. (7), (4) and (3) this becomes

J ¼ aCspTðtÞ: ð9Þ
For the case where p = 1 it was found previously that the nucle-

ation rate is a function of the normalized supersaturation s, [5]. The
proposal here is that J, for any p a positive integer, is a function of
the normalized supersaturation s, i.e.

J ¼ JðsðtÞÞ: ð10Þ
With this in Eq. (9) T becomes

T ¼ J
aCsp

: ð11Þ

The derivative required for the left side of Eq. (6) can now be
computed.

dT
dt

¼ 1
aCsp

dJ
ds

ds
dt

� �
� Jp

aCspþ1

ds
dt

: ð12Þ

This result can now be used in Eq. (6) along with Eq. (11) and set
equal to the separation constant k.

1
aJsp

dJ
ds

ds
dt

� �
� p
aspþ1

ds
dt

¼ k: ð13Þ

Now with the use of Eqs. (3) and (11), Eq. (2), can be written as

ds
dt

¼ �cKCaspTðtÞ: ð14Þ

where the integral in Eq. (2) has been set to c and will be discussed
in detail later. Using Eq. (14) in Eq. (13) we arrive at the following
first order differential equation:

dJ
ds

� pJ
s
þ kasp

Kc
¼ 0: ð15Þ

An integrating factor is s�p so that Eq. (15) can be written as the
separable differential equation

d½s�pJ� ¼ � ak
Kc

ds: ð16Þ

At t = 0, s = 1 and the initial nucleation rate is Jo so that we
integrate Eq. (16) asZ s�pJ

Jo

d½s�pJ� ¼ �
Z s

1

ak
Kc

ds: ð17Þ
Computing the integrals in Eq. (17) and solving for J we get the
nucleation rate for any p a positive integer:

J ¼ ak
Kc

ð1� sÞ þ Jo

� �
sp: ð18Þ

An expression for the normalized supersaturation is now deter-
mined. Using Eq. (11) in Eq. (14) results in

ds
dt

¼ �ckJ: ð19Þ

Using Eq. (18) for J in Eq. (19) and rearranging leads to the
separable differential equation and thusZ t

0
dt ¼ �

Z s

1

ds

sp cK ak
Kc þ Jo
� �

� aks
h i : ð20Þ

We make the following assignments:

a ¼ cK
ak
Kc

þ Jo

� �
: ð21Þ

b ¼ �ak: ð22Þ
Eq. (20) becomes

t ¼ �1
a

Z s

1

ds
sp

þ b
a

Z s

1

ds
sp�1ðaþ bsÞ : ð23Þ

Eq. (23) gives the time dependent normalized supersaturation
for any p a positive integer. We denote each case as tp. When
p = 1, the above reduces to the result previously determined, [5]:

t1 ¼ 1
a
ln

aþ bs
sðaþ bÞ : ð24Þ

Setting p = 2 in Eq. (23) and integrating leads to

t2 ¼ 1
a

1
s
� 1

� �
� b
a2

ln
aþ bs
sðaþ bÞ
� �

: ð25Þ

Continuing for p > 2 leads to

tp ¼ s1�p � 1
aðp� 1Þ �

b
a
tp�1; for p ¼ 2;3;4;5; . . . ð26Þ

To assemble the distribution function we first give the initial
nucleation rate, Jo, in terms of the parameters involved. The initial
nucleation rate Jo is independent of p and from Ref. [5] T(t) was
determined for p = 1 so that Jo = a2 kC. Using this with Eqs. (3),
(7), (11) and (18) the full distribution function can be written:

f ¼ k
Kc

ð1þ acCK � sÞe�kL: ð27Þ
3. The kinetics of supersaturation decay

Now the results above can be compared with the kinetic data
given in the reports by Schlichtkrull [8,9] for bovine and porcine
insulin crystal growth. The percentage of insulin in the crystalline
state cc is given as a function of time. Setting the final percentage,
taken to be at the end of the intermediate stage as cf, we then con-
vert these data to normalized supersaturation s by

s ¼ cf � cc
cf

: ð28Þ

The parameters a and b can be varied and Eq. (25) fit to these
data. It is found that p = 2 gives the best fit, when compared to
p = 1 and p = 3, for both the bovine and porcine insulin crystalliza-
tion data sets. Since these data sets seemed to include the induc-
tion period, approximations had to be made concerning the start
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of the intermediate stage. We take this to be at the 45 min point for
the bovine case. Here, virtually no solute decay was reported for
the first 50 min. For porcine we take the start to be at 5 min before
the first reported non-zero value for cc. Almost 30 min went by
before detection of growth in this case.

The parameters a and k, which in turn yield b through Eq. (22),
can be further understood by considering additional data given in
the experimental reports. The distribution of crystal sizes at
equilibrium, f1, (when s = 0), is obtained from Eq. (27):

f1 ¼ k
Kc

ð1þ acKCÞe�kL: ð29Þ

Schlichtkrull reported data points for a cumulative distribution
of crystal sizes F(t, L), i.e. the number of crystals per unit volume
which are larger than L at time t. This relates to the distribution
function f as

f ðt; LÞ ¼ �dF
dL

: ð30Þ

Linearizing F at equilibrium leads to

ln F1 ¼ �kLþ ln N1: ð31Þ
Here N1, is the total number of crystals, per unit volume, in the

equilibrium solution. Eq. (31) was fit to the reported data and the
slope k determined. From the vertical intercept one gets lnN1
where

N1 ¼
Z Lmax

0
f1 dL: ð32Þ

Further, by studying data for F at various times during the inter-
mediate growth stage, Schlichtkrull was able to report that the log-
arithm of F versus L remained linear with unvarying slope during
growth. This implies that the assumption of the rate of crystal
growth being independent of crystal size is reasonable here. The
logarithm of the cumulative distribution at equilibrium data versus
L was linear for up to around 100 lm for both the porcine and
bovine runs. The data points then tail downward towards the
Fig. 1. Normalized supersaturation vs. time given by Eq. (25) fit to data
maximum observed size in the distribution; an effect seemingly
due to heterogeneous nucleation. k, found from a fit to the linear
part of the data, was essentially equivalent for the bovine and por-
cine cases and the largest crystal size, the greatest diagonal length
as viewed from above, observed in the final distributions are sim-
ilar as well, both around 105 lm. This even though the linear fit
curve extrapolates to a larger maximum size of about 125 lm.
The value found for kwas similar in all the additional experimental
insulin crystal growth runs included in Refs. [8,9] thus we take it to
be a constant for the two cases we consider and further speculate
that it might be a constant for all cases of insulin batch crystal
growth from solution.

We now describe how all of the undetermined parameters in
the theory can be established. A value for a can be obtained from
the experimental report. For a, the kinetic factor in the growth rate,
we use a standard model valid for the kinetic regime of growth
[12]:

a ¼ kðco � csÞ=q: ð33Þ
Here k is a kinetic coefficient. Schlichtkrull gives an initial

growth rate for each of the two growth runs. Upon inspection of
Eq. (4) it is seen that this initial growth rate is a. With a value
for a determined a and b can be varied so that Eq. (25) is fit to
the converted experimental data for normalized supersaturation.
This is done with k being equivalent for both cases. These results
are depicted in Figs. 1 and 2.

Now, mass conservation can be used to determine Lmax, the
largest crystal size at equilibrium. Since the initial supersaturation
is known mass conservation gives:

co � cs ¼ 4
3
pq
Z Lmax

0
L3f1 dL: ð34Þ

An expression is required for c. Consider the integral from
Eq. (2) where the upper limit is Lmax:

c ¼
Z Lmax

0
L2e�kL dL ¼ � L2maxe

�kLmax

k
þ 2

k

Z Lmax

0
Le�kL dL: ð35Þ
from Ref. [8] for bovine insulin crystallization. a = 0.05, b = �0.045.



Table 1
Data used and parameters determined in this study. p-porcine, b-bovine. Initial supersaturation, Dc = co � cs, and initial growth rate a, taken from Refs. [8,9]. Solid state mass
density used was q = 1.50 g/cm3, taken from Ref. [13]. Molecular weight used for insulin was 5734 Da taken from Ref. [9]. Lmax values determined from mass balance via Eq. (34).
Total density of crystals at equilibrium N1 computed using Eq. (32).

Jo ml minð Þ�1
� �

a lm
min

� 	
C min

ml lm

� �
K b ðlm3

ffiffiffiffiffiffiffiffiffiffi
l

mmol
3
q

Þ c ðlm3Þ k ðlm�1Þ Dc mmol
l

� 	
Lmax ðlmÞ N1 104

ml

� �
157.9b 0.689b 5120.8b 5057.6 b 490,000 6558.2b 0.065 0.65b 82.0b 3.4b
402.8p 1.29p 3707.6p 2185.7p 6780.1p 1.50p 90.0p 7.2p

53.0ab,p 1000ab,p

a From Refs. [8,9].

Fig. 2. Normalized supersaturation vs. time given by Eq. (25) fit to data from Ref. [9] for porcine insulin crystallization. a = 0.09, b = �0.084.
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Further evaluation leads to:

c ¼ 2
k3 � e�kLmax

L2max

k
þ 2Lmax

k2 þ 2
k3

 !
ð36Þ

Lmax is then varied in Eqs. (36) and (34) until we get conserva-
tion below 1% for both insulin growth cases. With this final value
for c and Lmax, J, Jo, C and N1 are determined. Relevant data and
resulting parameter values are listed in Table 1.
4. The maximum crystal size

An approximation for the maximum size in the final distribu-
tion is developed below in which it is found that the maximum size
at equilibrium depends only weakly upon the initial supersatura-
tion. To get this expression for Lmax we consider a simplified and
approximate version of Eq. (36) which retains the general nature
of the original expression while being equivalent at Lmax = 0 and
Lmax ?1:

c ¼ 2
k3 ð1� e�kLmax Þ ð37Þ
From the distribution of sizes for insulin given by Schlichtkrull,
and from the nature of the distribution function determined here,
it must be that the crystals of size Lmax originate from the first
nuclei generated at the onset of the intermediate stage, those of
L = 0 at t = 0. This is just f(0,0) so that from Eq. (27) comes,

f ð0; 0Þ ¼ akC; ð38Þ
so that at equilibrium also

f ðL ¼ Lmax; t ! 1Þ ¼ akC: ð39Þ
With Eq. (27) at t?1 this becomes

1
cK

ð1þ acCKÞe�kLmax ¼ aC: ð40Þ

Using Eq. (37) for c in Eq. (40) leads to the following:

Lmax ¼ 1
k
cosh�1 k3

4aCK
þ 1

 !
: ð41Þ

Inserting our definitions for a and K in the above leads to.

Lmax ¼ 1
k
cosh�1 k3

16pCk
þ 1

 !
: ð42Þ
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With values listed in Table 1. the largest sizes at equilibrium for
the two insulin runs can be computed via Eq. (42). As expected, due
to the approximation for c, Eq. (42) underestimates the value
obtained from mass-conservation for the idealized homogeneous
nucleation model at 35 lm for bovine and 39 lm for porcine. How-
ever, from the computed values for the parameter C and the initial
nucleation rates, we find that for the two runs studied here C is
inversely proportional to the cube root of the initial supersatura-
tion. With the addition of an appropriate factor, combined within
the constant b, Eq. (42) can be converted to a form that gives values
for the maximum size at equilibrium to within 2% of those found
via mass-conservation:

Lmax ¼ 1
k
cosh�1ðbk3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðco � csÞ3

p
þ 1Þ: ð43Þ

Our value for b is given in Table 1. Now with Eq. (43) we com-
pute a maximum radius for bovine of 84 lm and for porcine,
90 lm. We suggest that these radii are an idealized maximum
value, at the end of the intermediate stage, resulting from solely
homogeneous nucleation while values from the experimental
reports, approximately 53 lm for both, resulted from a mixture
of homogeneous and heterogeneous nucleation. It is possible that
b and k are universal constants for all cases of insulin batch crystal
growth and that for other proteins undergoing batch growth a sim-
ilar set of constants might be determined which would enable the
use of Eq. (43) for the estimation of Lmax.
Fig. 4. Plot of the estimated linear growth rate vs. time for the idealized
homogeneous nucleation model for insulin crystallization cases given in Refs.
[8,9]. Curve with higher initial growth rate is for porcine, lower initial growth rate
curve is for bovine.
5. Conclusion

A theory for the intermediate stage of crystal growth was used
to study the kinetics of supersaturation decay, the homogeneous
nucleation rate and the distribution of crystal sizes for bovine
and porcine insulin batch crystal growth from solution. A solution
was presented for the governing equations where the growth rate
is directly proportional to the normalized supersaturation raised to
the power of any positive integer. The theory describes the
Fig. 3. Plot of the idealized homogeneous nucleation rate vs. time for insulin
crystallization cases given in Refs. [8,9]. Lower curve is for bovine upper for porcine.
normalized supersaturation decay reported for insulin crystal
growth when the linear growth rate is taken to be proportional
to the square of the normalized supersaturation. Upon comparing
with experimental data the theoretical distribution function
underestimates the total density of crystals at equilibrium while
overestimating the maximum crystal radius at equilibrium. This
leads us to propose that it serves as an idealized homogeneous
nucleation model for the insulin growth cases studied here. The
resulting expression for the distribution of sizes is equivalent in
form to that suggested in the experimental reports. An approxi-
mate expression for the largest crystal size at equilibrium is given.
With experimental data from the insulin crystal growth studies,
we are able to determine values for all parameters in the theory.

The homogeneous nucleation rate is estimated for all times dur-
ing the intermediate stage and is depicted for both insulin types in
Fig. 3. The theoretical distribution function, Eq. (27), is at all times
exponential with respect to crystal radius L. However, though the
distribution function varies with time this change is neither exclu-
sively linear or exponential but of a more exotic nature coming
through its dependence upon s(t). The theoretical nucleation rate
reaches a maximum in time when the product of the growth rate
and the distribution function, for L = 0, are a maximum, which is
not at t = 0. A physical explanation for this effect is that there is
some competing process opposing nucleation that is also in some
way proportional to the normalized supersaturation. Peculiarities
in the homogeneous nucleation rate during protein crystal growth
have been reported [14,15]. The theoretical linear growth rate ver-
sus time for both insulin types is shown in Fig. 4. Additionally, the
total number of crystals per ml of solution at equilibrium, N1, was
computed for each run using Eq. (32). These values are less than
those reported from experiment [8,9] suggesting that heteroge-
neous nucleation was present thus increasing the final density of
crystals. In fact, Schlichtkrull suggested that as N exceeds
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105 ml�1 that a second form of nucleation, on the face of the crys-
tals themselves, becomes dominate until the density of crystals
reaches its equilibrium value of approximately 107 ml�1.

It seems evident that in the experimental work considered here
there was a mixture of homogeneous and heterogeneous nucle-
ation involved in the growth process. After comparing with the
theoretical model we suggest that the maximum possible crystal
size at the end of the intermediate stage is obtained when nucle-
ation is limited to be only of the homogeneous type. Further, an
expression is given that can be used to estimate the largest possi-
ble crystal size at the end of the intermediate stage. This relation
predicts that for the crystal sizes encountered here, the largest size
at equilibrium depends weakly upon the initial supersaturation.
These results may be applicable for protein crystal batch growth
from solution in general. It is perhaps not a surprise that there exist
a restriction on the maximum possible crystal size after the
intermediate stage of growth for insulin crystals from solution.
Nature has conspired to restrict the size of such crystals. Reports
of large volume quality protein crystals seem to indicate final
results were achieved via ripening and not by intermediate stage
growth alone [10,16].
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