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a b s t r a c t

At atmospheric pressure, many of the II–VI semiconducting alloys are known to undergo a zinc-blende

to wurtzite solid–solid transition. Experimental values for these transitions temperatures have only

been reported for two alloys. We show here that chemical potentials for one of the components in a

solid solution with the other can be used to estimate the transition temperature. The non-ideal

behavior of the solvent component is addressed via an activity coefficient which is determined using

the quasi-chemical model. The chemical potentials for each case, zinc-blende and wurtzite are then

taken to be equal at the transition temperature. Predicted transition temperatures are reported here for

ZnS, CdS, ZnSe, ZnTe, and CdSe. In the case of ZnS and CdS these values agree with the experimental. For

ZnSe, ZnTe, and CdSe the values are above their respective melting points. This result suggests that

there is no complete bulk transition below the melting point for these three alloys but calculations

predict that the two phases are nearly isoenergetic.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The wide band gap II–VI semiconducting alloys are an impor-
tant class of materials for electronic applications in that their
band gaps can span the IR–visible–UV range. Several of these
binary alloys have been identified as potential candidates for use
in blue-green light emitting devices and solar cells [1]. Unfortu-
nately, only CdTe can be effectively doped both p and n type as
the other II–VI alloys exhibit a strong donor compensation effect
for either p or n dopants [2–5]. This fact limits the applicability of
these materials in semiconductor electronic devices. The exact
origin for this compensation effect is a matter of significant
debate with different explanations having been proposed
throughout the years. Principal among these are that the effect
stems from issues with impurities and native defects [4]. Addi-
tional detailed information on the thermal and structural nature
of these materials, in the solid state, could lead to a better
understanding of this compensation effect and in general expand
the knowledge base for this important class of semiconducting
materials.

One interesting property for some of the II–VI binaries is that
at atmospheric pressure they undergo a solid–solid phase transi-
tion below the melting point. The room temperature state is the
zinc-blende conformation while the high temperature solid state

is that of wurtzite. II–VI alloys known to be found in both solid
phases include CdS, ZnS, ZnTe, ZnSe and CdSe [6]. The precise
temperature for an abrupt transition is only known for ZnS [6,7],
while a range for occurrence has been reported for CdS [6].
However, crystals for these materials are often not found in a
structurally homogeneous state. Alternating layers of zinc-blende
and wurtzite are known to occur [8,9]. To our knowledge,
transition temperatures have not been reported for the other
binary alloys mentioned above.

In this report it is shown that the transition temperature can
be predicted by equating chemical potentials. This situation is
sketched in Fig. 1. Here it is seen that the low temperature zinc-
blende potential is favored, that is, the state with the lower
chemical potential, at lower temperatures. The two potentials are
equal at the transition temperature. Above the transition tem-
perature the wurtzite state is favored.

To develop expressions for the chemical potentials, one of the
binary components is assumed to act as the solvent in a solid
solution with the other. Then, non-ideal effects in the potential
are accounted for with an activity coefficient. These activity
coefficients are then determined using the quasi-chemical model.

The quasi-chemical model requires the knowledge of an
interchange energy w. Rather than leave this as an adjustable
parameter we show that it can be computed using known thermal
data for the components involved and reported structural data for
the binary solid. Finally, when chemical potentials are then
equated the transition temperature can be determined. The value
computed here is within 2% of the experimentally reported value
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for ZnS. For CdS our computed value is within 2% of the high end
of the reported range. For the remaining II–VI binaries considered
here, ZnSe, ZnTe, and CdSe, the transition temperatures are also
estimated using this method and reported here. These values are
greater than the 1 atm melting temperature for all three materials.
This result leads us to speculate that the two phases are nearly
isoenergetic and that the zinc-blende and wurtzite structure
types exists simultaneously in these alloys with no complete
transition from zinc-blende to wurtzite below the melting point.
To investigate this claim the derived expressions for the chemical
potentials are used to compute the difference in potential
between the two states at room temperature for each of the
alloys. This difference is on the order of kT.

2. Theory

Here we model the binary alloy as a solid solution of two
components A and B. Then we write for the chemical potential mz

for one of the components within the solution in the zinc-blende
phase as

mz ¼ mo
zþkTln xgz

� �
ð1Þ

and likewise for the wurtzite phase:

mw ¼ mo
wþkTln xgw

� �
: ð2Þ

here k is Boltzmann’s constant, T the absolute temperature, m1 the
chemical potential of the pure component at the standard state, x

the mole fraction of said component and g the activity coefficient.
When g¼1 the solution is ideal. In this study the mole fraction is
held constant at x¼½. At the transition temperature, Tt, the
potential of Eq. (1) will equal that of Eq. (2) and the following
will be true.

kTtln xgz

� �
¼DmoþkTtln xgw

� �
ð3Þ

whereDmo ¼ mo
w�mo

z . In the non-ideal situation, considered here,
the activity coefficients will be a function of the temperature. So
in order to use Eq. (3) to estimate the transition temperature the
activity coefficients and a value for the constant Dm1 must be
determined.

We express the activity coefficients using the quasi-chemical
model as outlined by Guggenheim [10]. In this model for a solid
solution of components A and B, the distribution of AB pairs in the
solution has a temperature dependence given by a Boltzmann
type distribution. Following Guggenheim we declare the

following

Z¼ ew=zkT ð4Þ

where z is the number of nearest neighbors and w the interchange
energy. In this study z¼4. Now, the following quantity is also
useful.

b¼ 1þ4x 1�xð Þ Z2�1
� �� �1=2

ð5Þ

With this, the activity coefficients, for the situation where
x¼1/2, can be given as [10].

g¼ 2b
bþ1ð Þ

� � 1=2ð Þz

ð6Þ

Since x¼½ here the activity coefficient would be given by
Eq. (6) for either component. In this analysis we need only focus
on one component and then determine the interchange para-
meter w for the said component in each solid phase. Thus we will
have an activity coefficient for the zinc-blende phase and another
for the wurtzite state.

Guggenheim states that the interchange energy is the energy
required to remove one atom of component A from the bulk of
pure A and the same for an atom of component B and then
interchange the two atoms [11]. We here propose a simple and
direct way to compute this parameter using known experimental
results for the thermal properties of the elements involved and
structural properties of the binary alloy in each solid state.

To begin, the interchange energy is taken to be given by the
following

w¼� DHA
vapþDHB

vap�2DHAB
vap

� 	
=NA ð7Þ

where DHvap is the heat of vaporization in J/mol for component A,
B or the mixture AB as denoted in Eq. (7). NA is Avogadro’s
number. Heats of vaporization for the pure component elements
are known however, an approximation is used to determine DHvap

for the AB mixture.
Several groups have suggested that lattice energies in a crystal

are related to the lattice parameter a [12,13]. Phillips and van
Vechtan [13] have suggested that an energy gap for a solid is
proportional to a�2.5. From this, Stringfellow [14] has proposed
that the heat of sublimation for a solid be given by

DHsub ¼
K

a2:5
ð8Þ

here K is a constant determined from fitting Eq. (8) to experi-
mental data. A similar linear trend exists for experimental heat of
vaporization data, DHvap, for the II–VI elements considered here.
This is shown in Fig. 2 below. Fitting the data to a straight line
leads to a value for the constant K. Here we find that
K¼1.21278�106 J Å2.5/mol. Since lattice parameter data is avail-
able for CdS and ZnS in zinc-blende and the wurtzite state, Eq. (6)
can be used to compute DHvap for the binary in each phase and
then an interchange energy can be computed for each state; wz

and ww respectively. For the hexagonal wurtzite conformation
where multiple lattice parameters are reported, the smallest of
these is used in the computation of ww. Now, activity coefficients
can be computed using Eq. (6) for the component in each phase
and then Eq. (3) can be used to determine the transition
temperature.

Unfortunately the difference in chemical potentials for the
pure component at standard state, Dm1, is not known. However,
this value can be approximated if we consider the first derivatives
of the chemical potentials. Since the potentials of pure compo-
nents at standard state are not a function of the temperature they
are not involved in derivatives of m. Consider the first derivatives

Fig. 1. Schematic diagram showing approximate isobaric chemical potentials for

the solid in the zinc-blende and wurtzite states. The vertical line identifies the

transition temperature.
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at the transition temperature

mz ¼
dmz

dT


 �
T ¼ Tt

ð9Þ

mw ¼
dmw

dT


 �
T ¼ Tt

ð10Þ

with Eqs. (9) and (10) we can write the following linear pseudo-
potentials

mw ¼mwTþbw ð11Þ

mz ¼mzTþbz ð12Þ

Now it is assumed that the difference in zinc-blende and
wurtzite potentials at the standard state temperature To can be
given by the difference of Eqs. (11) and (12), that is

mw Toð Þ�mz Toð Þ ¼ mw�mzð ÞToþbw�bz ð13Þ

For our true potentials in Eqs. (1) and (2) at the standard state
temperature we have

mw Toð Þ�mz Toð Þ ¼DmoþkToln
gw Toð Þ

gz Toð Þ
ð14Þ

the pseudo-potentials of Eqs. (11) and (12) are taken to be equal
at the transition temperature. This allows the difference of
intercepts to be eliminated in Eq. (13) and then Eqs. (13) and
(14) can be used to arrive at the following involving Dm1.

mw�mzð ÞToþ mz�mwð ÞTt ¼DmoþkToln
gw Toð Þ

gz Toð Þ
ð15Þ

By solving for Dm1 in Eq. (15), and then using this in Eq. (3),
along with the activity coefficient of Eq. (6) with the computed
values for the interchange energy, the transition temperature can
then be determined. The data used in the calculation of the
activity coefficients is listed in Table 1

3. Results and conclusion

Plotting each side of Eq. (3) independently allows for the
intercept to be found which is the transition temperature. These
curves are shown for the cases of ZnS and CdS below in Figs. 3 and 4
respectively. The transitions temperatures computed here are
listed in Table 1 along with the corresponding values reported
from experiment. In the case of ZnS the temperature computed
here is with 2% of the reported experimental value. For CdS the

value computed here is within 2% of the high side of the reported
transition range.

It is interesting to consider the other II–VI alloys which are
reportedly found in the zinc-blende and/or wurtzite state and for
which we also have lattice parameter data. These are ZnSe, CdSe
and ZnTe. To our knowledge, no transition temperatures have
been reported for these alloys. The theoretical method outlined
here finds a transition temperature in each case above the 1 atm
melting point. These values are listed in Table 1. Considering this,
it may well be that these materials do not undergo a complete
bulk solid–solid phase transition ever at 1 atm. As mentioned

Fig. 2. Heat of vaporization data for selected group II metals and chalcogens

plotted vs. their lattice constants raised to the power of �2.5, [7]. For a hexagonal

lattice, the smallest of the reported lattice parameters is utilized. This data is fitted

to the straight line depicted with the slope being K.

Table 1
Data used in the calculation of the transition temperatures for selected II–VI alloys

and the computed transition temperatures along with Dm at 300 K.

Alloy Tt (K) Tm (K) a (Å) Dm (J) w (J)

Ref [7] Ref [6] at 300 K

ZnS 1273b 2100 5.4109c 6.8978�10�21
�1.5479�10�19c

1293[6] 3.820d
�7.1003�10�19d

1295[7]

CdS 1089b 1750 5.83c 5.34238�10�21
�1.3326�10�19c

973–1073[6] 4.1348d
�6.6717�10�19d

CdSe 1634a 1512 6.084c 5.54221�10�21
�1.6517�10�19c

4.309d
�1.0476�10�19d

ZnSe 1868a 1790 5.6686c 6.80175�10�21
�1.8819�10�19c

4.01d
�1.1573�10�19d

ZnTe 2533a 1568 6.089c 6.19824�10�21
�2.3336�10�19c

4.27d
�1.7046�10�19d

a Predicted transition temperature is above the 1 atm melting point.
b Value computed in this work.
c Zinc-blende.
d Wurtzite.

Fig. 3. Plot of the right and left side of Eq. (3) for the case of ZnS.

Fig. 4. Plot of the right and left side of Eq. (3) for the case of CdS.
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previously, the wurtzite phase is known to often appear in these
alloys interspersed with the zinc-blende structure in the form of
layers. If the chemical potentials for the two phases are separated
energetically on the order of a thermal fluctuation up until the
melting point then a portion of the material might shift into the
wurtzite state. To investigate this possibility further Dm, the
difference between the wurtzite and the zinc-blende chemical
potentials at room temperature is computed for each alloy
considered here. This is accomplished by computing Dm1 with
Eq. (15) using the estimated transition temperature and then
using Eq. (14) with To replaced with 300 K. The results are listed
in Table 1. It is clear that these energies are on the order of kT so
that the two phases are almost isoenergetic for all the binary
alloys considered here. It is interesting to note that CdS has the
lowest value for Dm at room temperature. It is no surprise then
that a range of 973–1073 K, has been reported for the transition in
this alloy. Here the estimated transition temperature is at the
high side of that range. This agrees with the reported data in that
all of the sample is predicted to be transformed to the wurtzite
state above 1073 K.
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