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Abstract
Many experimental reports for the kinetics of crystal nucleation and growth, from an

isothermal solution, point to a sigmoidal-like behavior for the process. Here we con-

sider three different nucleation models from the literature and show that all lead to

sigmoidal or sigmoidal-like behavior for the kinetics of nucleation. A two-step nucle-

ation process is known to occur within certain supersaturated protein solutions, and it

is demonstrated in this report how the sigmoidal law yields kinetic information for the

two-step and homogeneous nucleation modes. We propose here that two-step solute-

rich associates form in the solution around seed nuclei that are already present at or

near the point in time when the solution is prepared. Using this hypothesis, we are

able to model the time-dependent volume of the two-step phase per unit volume of

solution and show that this compares well with reported experimental data. A kinetic

model is given for the proposed process, which leads to a sigmoidal rate law. Addi-

tionally, a relation between the initial and final nuclei densities and the induction time

is derived. As a result of this study, the conclusion is that two-step activity increases

with increasing initial supersaturation or increasing salt concentration.
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1 INTRODUCTION

Events leading to the first seeds for crystal growth, in addi-

tion to their particular structure, within the bulk of a supersat-

urated solution, continue to be somewhat of a mystery. Early

pioneers in the field like Becker and Döring equated the pro-

cess to that of the condensation of water droplets from the

vapor as previously considered by Gibbs and Volmer (Ref.

1, p. 175). From this model, a thermodynamic criteria for

the formation of crystal seeds or so-called critical nuclei can

be established. Henceforth, in this report, the words nucleus

or nuclei are taken to be synonymous with critical nucleus

or critical nuclei. This approach has come to be known as

the classical model for homogeneous nucleation. With a ther-

modynamic requirement for nuclei formation established, a

temperature dependence and rate of nuclei formation are

then obtained by assuming an Arrhenius dependence. Finally,

using the Gibbs-Thomson relation the supersaturation can be

related to the free energy of nuclei formation, thus yield-

ing the nucleation rate J, that is the number of nuclei form-

ing per unit volume per unit time, in terms of the solute

concentration c:

𝐽 = 𝐴 exp

[
−16𝜋𝛾3𝑣2

𝑚

3𝑘𝐵3𝑇 3(ln 𝑐∕𝑐𝑜)2

]
, (1)

here T is absolute temperature, 𝑘𝐵 Boltzmann’s constant, 𝛾

the interfacial tension between nuclei and solvent, 𝑐𝑜 the sol-

ubility, 𝑣𝑚 the molecular volume, and A a constant.

The crystal growth process for a supersaturated solution

can be divided into three stages: induction, intermediate, and

ripening. In the first stage, a period of time elapses before the
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appearance of crystals and thus the first detectable decrease

in a solute concentration. We take the view here given by

Mullin, and let the induction period be the sum of a relax-

ation and nucleation time as well as an additional time period

for the nuclei to grow to detectable size (Ref. 1, p. 194). Next,

the intermediate stage begins with the onset of crystal growth

and a detectable decrease in the supersaturation. The interme-

diate stage ends when the solute concentration equals its sol-

ubility concentration. Finally, in the ripening stage while the

solute concentration remains essentially constant there can be

an energetically favorable transfer of material from small to

larger crystals.

Equation (1) is sometimes referred to as the model of

Weber-Volmer-Frenkel-Zel’dovich.2 Another frequently used

model for the nucleation rate is the power law expression often

attributed to Meir: 𝐽 = 𝛽(𝑐 − 𝑐𝑜)𝑝.2 Here 𝛽 is a constant and

p a positive integer. In both cases, the time dependence at

constant temperature comes through the solute concentration,

that is, 𝑐 = 𝑐(𝑡), where t is time. Beginning with a kinetic

model, Katz and Donohue derived a result similar to Equa-

tion (1) with the concentrations being replaced by forward and

backward attachment rate coefficients so that the time depen-

dence for the nucleation rate depends upon behavior of these

coefficients.3

A rigorous treatment of the time dependence of the nucle-

ation phenomenon comes from the kinetic model of Szilard

and Farkas.4,5 This complete, subsequent monomer addition

mechanism has been studied theoretically by many workers.

However, after a thorough search of the literature on protein

aggregation Morris et al. found that “…the resulting mathe-

matics and kinetic equations corresponding to the complete

mechanism are, however, not routinely used to fit experimen-

tal data”.6 More recently, several phenomenological theories

for the nucleation rate have been considered where time is

an explicit independent variable in the governing equations.

All are very useful for comparison with experimental results.

Nanev and Tonchev proposed a rate law for the cumulative

density of nuclei in a supersaturated protein solution.7,8 Here

the nuclei density n at time t are governed by the logistic dif-

ferential equation,9

𝑑𝑛

𝑑𝑡
= 𝑘𝑛 − 𝜔𝑘𝑛2, (2)

where 𝜔 and k are constants. The solution for Equation (2) is

the sigmoid function for 𝑛(𝑡). Many examples of this kinetic

behavior for cluster formation are found in the experimental

literature.10–14 Nanev and Tonchev find this kinetic behav-

ior specifically for nucleation within supersaturated insulin

solutions for seven different initial supersaturations.7 Mor-

ris et al. used the Finke-Watzky two-step kinetic model

to study over 10 cases of protein aggregation from the

literature.6 This model, which has a step for nucleation and

another for aggregation, leads to a sigmoidal equation for the

concentration of protein converted to aggregate. Here two-

step refers to the steps in the kinetic model not to a two-

step nucleation process. In the Appendix, we present a kinetic

model exclusively for nuclei from which Equation (2) can be

derived.

Another approach involves use of a Fokker-Planck equa-

tion for continuity coupled with an integral equation for

mass balance. Larson and Randolph showed that a sim-

ilar system could be solved for the case of continuous

crystallization.15 Later, the same theory was modified by

Buyevich and Mansurov for the study of batch crystalliza-

tion where a description of the crystal size was included via a

size distribution function.16 In this form, the system is nonlin-

ear and an approximate solution was given. Since the time of

Buyevich and Mansurov’s paper, variants of this model have

been used to study a variety of crystal growth systems.2,17–23

The governing equations are

𝜕𝑓 (𝑡, 𝑟)
𝜕𝑡

+ 𝜕𝐺(𝑡)𝑓 (𝑡, 𝑟)
𝜕𝑟

= 0, (3)

𝑑𝑠(𝑡)
𝑑𝑡

= −𝐾 ∫
∞

0
𝑟2𝐺(𝑡)𝑓 (𝑡, 𝑟)𝑑𝑟, (4)

where s is the normalized supersaturation, r the crystal radius

or some other characteristic length,𝐺 = 𝑑𝑟∕𝑑𝑡 the linear crys-

tal growth rate, f the size distribution function, and K a con-

stant. A standard approach in dealing with the system above

is to select a model for the growth rate G and the nucleation

rate J, where 𝐽 = 𝐺𝑓 (𝑡, 0). Barlow showed that by assum-

ing the distribution function to be separable, along with a

model for the growth rate, the system given by Equations (3)

and (4) can be solved for the distribution function.18 There-

fore, the nucleation rate is determined by this solution and

need not be modeled beforehand. This result for the nucle-

ation rate is shown here to be equivalent to the result arrived

at by Nanev and Tonchev through the solution of Equation (2).

As a result, the parameters from the expression for the nucle-

ation rate determined by Ref. 18 can be related to those of

Ref. 7.

A third model was recently considered by Kashchiev and

co-workers.24 Here the nuclei are presumed to appear as

part of a two-step nucleation mechanism—a phenomenon

that has been suspected to occur in certain cases of crystal

growth and/or protein aggregation.10,25–33 Rather than form-

ing homogeneously, it is proposed that nuclei form within

solute-rich clusters throughout the host solution. Henceforth

in this report, we will refer to these clusters as associates.

As the growth process proceeds, these associates can either

develop into stable crystals, dissolve back into the solution,

or be directly consumed by nearby growing crystals. If the

final density of nuclei that will form during the growth pro-

cess is given by 𝑛0 then Kashchiev and co-workers give the

time-dependent density of two-step nuclei, 𝑛𝑡𝑠, forming in
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the solution as a generalization of the Johnson-Mehl-Avrami-

Kolmogorov (JMAK) equation (Ref. 5, p. 375)

𝑛𝑡𝑠 = 𝑛0

{
1 − exp

[
−∫

𝑡

𝑜

𝑗𝑐(𝑡′)𝑣(𝑡 − 𝑡′)𝑑𝑡′
]}

. (5)

These associates form at time 𝑡′, where 𝑡′ <= 𝑡. The volume

of an associate is given by v, whereas the rate of nucleation

within the two-step associate is given by 𝑗𝑐 . Kashchiev and

co-workers go on to model the function v with an Avrami-

type expression and then use Equation (5), and other similar

expressions, to study steady-state two-step protein nucleation

from solution.

In addition to demonstrating that the nucleation rate deter-

mined by the solution of Equation (2) is equivalent to that as

found from the system of Equations (3) and (4), it is shown

that under certain conditions Equation (5) yields sigmoidal-

like results for the kinetics of nucleation, that is, when the

integrand in Equation (5) is a function of t.
Two-step nucleation, of some sort, is suspected to be

active for certain cases of protein crystal growth from solu-

tion and has been confirmed recently for the crystalliza-

tion of 𝛽-lactoglobulin.10 We suggest then that the sigmoidal

rate law describes both nucleation via the two-step method

and the homogeneous one as well. By comparing this claim

with experimental reports, we demonstrate how the theory

describes cases where homogeneous nucleation is dominant

and situations when two-step nucleation is also present. These

results suggest that the two-step associates form around seed

nuclei that exist essentially at the instant of solution cre-

ation. Then, as time proceeds, the two-step nuclei dissolve or

are transferred directly into growing crystals formed around

homogeneous seeds. Based on the reports studied here, it

appears that for batch protein crystallization as the initial

supersaturation or salt concentration increases the two-step

mechanism becomes more active. Additionally, an estimate

is given for the volume of a two-step associate as a function

of time for a reported case of protein crystal growth where

two-step activity was confirmed by X-ray diffraction. Finally,

an expression for the induction period is generalized here so

that it is written in terms of the rate constant and the initial

and final nuclei densities. All applications of these models in

this report were for supersaturated batch growth from solution

at constant temperature.

2 ANALYSIS

The nucleation rate determined by solving Equation (2) is

shown here to be equivalent in form to the nucleation rate

given in Ref. 18 for the solution of Equations (3) and (4). We

let Equation (2) have the initial and final conditions that at

𝑡 = 0, 𝑛 = 𝑛1 and as 𝑡 → ∞, 𝑛 → 𝑛0. With these, Equation (2)

can be separated and integrated to yield

𝑛 =
𝑛0

1 + (𝑛0−𝑛1)
𝑛1

𝑒−𝑘𝑡
. (6)

Now, using this result we find the nucleation rate 𝐽 = 𝑑𝑛∕𝑑𝑡:

𝐽 =
𝑘𝑛0

(
𝑛0−𝑛1
𝑛1

)
𝑒−𝑘𝑡(

1 + 𝑛0−𝑛1
𝑛1

𝑒−𝑘𝑡
)2 . (7)

Starting with Equations (3) and (4), Ref. 18 gives a nucleation

rate, which after rearrangement leads to

𝐽 = 𝐶𝑘2𝑒−𝑘𝑡

𝜆𝑏2
[
1 + (1∕𝑏)𝑒−𝑘𝑡

]2 , (8)

where the parameters 𝜆, C, and b are defined in Ref. 18. By

inspection, it is seen that Equations (7) and (8) are of the same

form. Further, we find parameters between the two relate as

1
𝑏
=

𝑛0 − 𝑛1
𝑛1

,
𝐶𝑘

𝜆
=
(

𝑛1
𝑛0 − 𝑛1

)
𝑛0. (9)

Now, consider the third model mentioned above, Equa-

tion (5). This expression is a generalization of the original

JMAK equation used to study the fraction or extent of crys-

tallization over time. It implies a first-order growth law. If the

rate coefficient is time dependent, then the model can yield

sigmoidal-like behavior. For example, for the fraction of crys-

tallization, 𝛼, Kashchiev gives

𝛼(𝑡) = 1 − exp
(−𝑡𝑝

𝐵

)
, (10)

where B and p are positive valued parameters (Ref. 5, p. 378).

In using the model here for the study of nucleation, the time

dependence for the rate coefficient will be determined by the

integral in Equation (5). In the next section, it is shown that a

variant of Equation (5) can be used to model the kinetics for a

two-step nucleation process and thus the time dependence for

the volume of the two-step associate can be estimated.

A first-order decay/growth law with a time-dependent rate

coefficient, which yields sigmoidal-like behavior, is typically

associated with chemical reactions where there is a precat-

alytic phase and thus an induction period. In the past, certain

groups have suggested that the system given by Equations (3)

and (4) be restricted to an analysis of the intermediate stage of

growth.16,18,22 However, the more general view taken here is

that the sigmoid law can be used to describe both the interme-

diate stage and induction period less any relaxation time. That

is, it includes an initial time period where though the super-

saturation decays, this decay is imperceptibly small. Thus we

take the induction period 𝜏 to be given by 𝜏 = 𝑡𝑛 + 𝑡𝑔 , where

𝑡𝑛 is the nucleation time, the time required for the first stable
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nucleus to appear and 𝑡𝑔 the time required for a nucleus to

grow to a crystal of detectable size.

Previously, it has been proposed that the time span for the

induction period 𝜏, be given in terms of the sigmoid rate con-

stant k, and the time 𝑡𝑐 when the sigmoidal nucleation rate is

a maximum, as7,34

𝜏 =
(

6
𝜋2

)(
𝑡𝑐 − 2∕𝑘

)
. (11)

Using Equation (7), this can be written in terms of the initial

and final nuclei densities. From Equation (7), we find for 𝑡𝑐 :

𝑡𝑐 =
1
𝑘
ln
(
𝑛0 − 𝑛1

𝑛1

)
, (12)

and thus

𝜏 =
(

6
𝜋2𝑘

)[
ln
(
𝑛0 − 𝑛1

𝑛1

)
− 2

]
. (13)

Interestingly, Equation (13) predicts that the induction period

decreases as the ratio 𝑛1∕𝑛0 increases and becomes zero when

𝑛1∕𝑛0 = 1∕(𝑒2 + 1) ≈ 0.119. Values for 𝜏 are computed using

these results for three different experimental cases and listed

in the following section.

3 COMPARISON WITH
EXPERIMENT

Since two-step and homogeneous nucleation have been

reported for or are suspected to be involved in the nucleation

and crystallization of the proteins, insulin, lysozyme, and 𝛽-

lactoglobulin,7,10,26 and the sigmoid function has been shown

to accurately describe the kinetics of protein nucleation,7 we

propose here that Equation (6) describes both the two-step and

homogeneous nucleation process. To reveal this notion, we

note that Equation (6) can be rearranged and separated into

two terms as follows:

𝑛0𝑒
𝑘𝑡

(𝑛0−𝑛1)
𝑛1

+ 𝑒𝑘𝑡
=

𝑛0
(𝑛0−𝑛1)

𝑛1
+ 𝑒𝑘𝑡

+
𝑛0𝑒

𝑘𝑡 − 𝑛0
(𝑛0−𝑛1)

𝑛1
+ 𝑒𝑘𝑡

. (14)

It is proposed that the first term on the right of Equa-

tion (14) describes the kinetics of two-step nucleation whereas

the second term gives the homogeneous nucleation time

dependence. Therefore, it follows that there must have been

𝑛1 initial nuclei. These critical seeds are likely hard to detect

and are available as soon as the solution is prepared. However,

when 𝑛1 is small the second term dominates for all times t. In

this case, nucleation occurs mostly through the homogeneous

mechanism. These relationships are further clarified by using

Equation (14) to describe three sets of experimental data.

n 
(c

m
-3

)

0

50,000

100,000

150,000

t (min)
200150100500

F I G U R E 1 Data for nuclei density versus time reported by

Nanev and Tonchev7 for a relative supersaturation of 3.69.

Equation (14) is fitted to these data. The solid curve is for the total

nuclei density, that is the left side of Equation (14). The long-dashed

curve gives the predicted homogeneous nuclei density, whereas the

finely dashed curve gives the predicted two-step nuclei density which

decays as nuclei are transferred to growing crystals. 𝑘 = 0.11 min−1,

𝑛0 = 150, 000 cm−3, 𝑛1 = 9000 cm−3, 𝑛1∕𝑛0 = 0.06, 𝑇 = 303 K

Nanev and Tonchev7 have reported experimental nucle-

ation data for insulin crystal growth from batch solution

for several different initial supersaturations. These data were

collected using the nucleation-growth-separation principle
(NGSP) technique. Equation (14) is fitted to data from this

report for the highest initial supersaturation given. This is

depicted in Figure 1. 𝑛(𝑡) overall, that is, Equation (6), is fit-

ted to the data, and then the two terms on the right of Equa-

tion (14) are also separately shown. In this higher supersatu-

ration case, the initial nuclei 𝑛1 are a significant fraction of

the final nuclei 𝑛0. From the curve given by the first term on

the right of Equation (14), it is seen that the initial nuclei 𝑛1
are used to initiate the two-step process and are eventually

consumed directly or indirectly into crystals growing from

homogeneous seeds. The curve for the second term on the

right of Equation (14) indicates the generation of homoge-

neous nuclei, which were not present in the solution at the

time of preparation.

It should be noted that when using the NGSP technique to

determine n, the behavior of any two-step nuclei in the solu-

tion at the time of separation could be altered. That is, they

might dissolve back into solution or go on to form into small

crystals. So there is some ambiguity as to whether the NGSP

method accounts for only homogeneous nuclei or both homo-

geneous and two-step nuclei. Even if the results account for

only homogeneous nuclei, as we suspect, the resulting curve

fits in Figure 1 go largely unaltered.

In the low supersaturation case (Figure 2), it can be seen

that nucleation is predicted to be almost entirely of the homo-

geneous type, that is the ratio of 𝑛1∕𝑛0 is smaller than for the
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F I G U R E 2 Data for nuclei density versus time reported by

Nanev and Tonchev7 for the lower relative supersaturation of 2.99.

Equation (14) is fitted to these data. Only the overall nucleation density

curve is shown fitted here as the nuclei are predicted to be mostly of the

homogeneous type. 𝑘 = 0.039 min−1, 𝑛0 = 5, 000 cm−3, 𝑛1 = 90 cm−3,

𝑛1∕𝑛0 = 0.018, 𝑇 = 303 K

higher supersaturation case. These results, along with other

reports from the literature,25,28 lead us to speculate that two-

step nucleation activity in protein batch growth increases as

the initial supersaturation increases.

𝛽-Lactoglobulin crystallization and growth was studied

recently by Sauter et al.10 We focus here on information given

for two growth runs at different salt concentrations and dif-

ferent initial supersaturations, that is, their figure 4. Data

for crystal density versus time were listed in this report for

the higher salt concentration case. Though the crystal den-

sity does not necessarily equate with the nuclei density n
at a particular time, it is however, following the description

given in the insulin cases above, likely to give a slightly time-

shifted representation of the homogeneous nuclei density. Fit-

ting 𝑛(𝑡) with these data was done previously by Nanev and

Tonchev.7 They report a rate constant from this fitting of

0.036 min−1. The process is repeated here with both terms

on the right of Equation (14) fitted as well. Our fit leads

to 𝑘 = 0.034 min−1 and is depicted in Figure 3. Here, as

in Figure 1, the curve fit points to the presence of initial

seed nuclei indicating two-step activity. Unfortunately, crys-

tal density versus time was not reported for the low salt con-

centration case but from the experimenter’s description of

this run, that is it having a longer induction period and no

evidence of two-step activity, we suspect that it to could

be fitted to Equation (14) and reveal characteristics simi-

lar to those of Figure 2. From these results, we are lead to

suggest that increasing salt concentration during batch pro-

tein crystal growth increases two-step activity. Additionally,

Sauter et al.10 carried out X-ray diffraction measurements

n 
(c

m
-3

)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

t (min)
5004003002001000

 

F I G U R E 3 Estimated crystal density versus time data based on

data reported by Sauter et al.10 for 15 mM CdCl2 in 20 mg/mL

𝛽-lactoglobulin solution—the higher salt concentration of the two cases

given in their figure 4. (Data were reported in number per area. An

assumption for the thickness involved, that is 50 𝜇m, was used to

convert the data into number per unit volume for this work. This was

done for consistency and does not alter the value of k nor the ratio

𝑛1∕𝑛0.) For purposes of discussion, Equation (14) is fitted to these data.

The solid curve is for the total nuclei density, that is the left side of

Equation (14). The long-dashed curve gives the predicted homogeneous

nuclei density,whereas the finely dashed curve gives the predicted

two-step nuclei density which decays as nuclei are transferred to

growing crystals. 𝑘 = 0.034 min−1, 𝑛0 = 7.5 × 106 cm−3, 𝑛1 =
0.75 × 106 cm−3, 𝑛1∕𝑛0 = 0.1, 𝑇 = 293 K

during the two batch growth runs mentioned above. These

results indicate the presence of two-step activity, what they

refer to as an intermediate phase, in the high salt concentra-

tion case but not in the lower concentration case.

Expression (5) can be used to model the kinetic behavior

of the volume of an associate affiliated with a seed nuclei

governed by the first term on the right of Equation (14). We

employ the first-order decay analogue of Equation (5) and

equate this to the two-step term on the right of Equation (14):

𝑛𝑡𝑠(𝑡) =
𝑛0

(𝑛0−𝑛1)
𝑛1

+ 𝑒𝑘𝑡
= 𝑛1 exp

(
∫

𝑡

𝑜

𝑗𝑐(𝑡′)𝑣(𝑡 − 𝑡′)𝑑𝑡′
)
.

(15)

Here 𝑗𝑐 < 0 and v is a function of 𝑡 − 𝑡′. 𝑡′, the time of birth for

the two-step associate, is set to zero so that all two-step nuclei

are formed at the start of the run. With these conditions, the

integral in expression (15) becomes 𝑗0𝑣(𝑡)𝑡, where 𝑗0 is the

initial two-step nucleation rate. Solving for 𝑣(𝑡) leads to

𝑣(𝑡) = 1|𝑗0|𝑡
⎧⎪⎨⎪⎩ln

⎡⎢⎢⎢⎣
𝑒𝑘𝑡 +

(
𝑛0
𝑛1

− 1
)

𝑛0∕𝑛1

⎤⎥⎥⎥⎦ −
𝑛1
𝑛0

𝑘𝑡

⎫⎪⎬⎪⎭. (16)
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F I G U R E 4 Fitting of Equation (17) to X-ray diffraction data

reported in Ref. 10. |𝑗𝑜| and k were used as adjustable parameters.

𝑘 = 0.071 min−1, |𝑗𝑜| = 1.37 × 104 cm−3. The quantity of area is

indicative of the presence of the two-step (intermediate) phase. The

area was computed from fitting X-ray data to a Gaussian curve, and

interested readers are encouraged to see Ref. 10 for further details

Here since the two-step associate was a critical nucleus at

𝑡 = 0, we require that 𝑣(0) = 0. This initial condition was used

to arrive at 𝑣(𝑡) in the form given above. Using this model for

v, along with the two-step nuclei density as given by the first

term on the right of Equation (14), we write the total two-step

associate volume, 𝑉𝑇 , in 1 cm3 of solution as a function of

time as

𝑉𝑇 =
𝑛0𝑣(𝑡)

(𝑛0−𝑛1)
𝑛1

+ 𝑒𝑘𝑡
. (17)

Recently, Sauter et al. reported X-ray diffraction data taken

during the crystallization of 𝛽-lactoglobulin from solution.10

Their data indicate that solute-rich two-step associates (an

intermediate phase) are initially not present but then grow as

the run proceeds and then eventually disappears as the crys-

tallization process goes to completion. Equation (17) is fitted

to X-ray diffraction data reported for the growth case depicted

in Figure 3. From Figure 3, we get 𝑛1 and 𝑛0. k and 𝑗0 are left

as adjustable parameters. This curve and data are depicted in

Figure 4. This fit yields 𝑘 = 0.071 min−1. Since the crystal

density data shown in Figure 3 are likely to be a time-shifted

picture of the nuclei density, it is not surprising that k obtained

from Figure 4, where the kinetics of two-step nuclei were stud-

ied, is larger than that of Figure 3. That is, the crystal density

at some point in time must correspond to an equivalent nuclei

density at an earlier time.

The ratio 𝑛1∕𝑛0 is given for each case considered here in

Figures 1–3. For the insulin nucleation cases studied here, in

Figures 1 and 2, the larger initial supersaturation case of Fig-

ure 1 has the larger 𝑛1∕𝑛0 ratio of the two and thus the shorter

T A B L E 1 Induction periods and nucleation times computed

using Equations (13) and (18) for the cases depicted in Figures 1–3

Figure 1 Figure 2 Figure 3
𝜏 4.16 min 31.2 min 1.67 min

𝑡𝑛 60.6 ms 17.0 s 1.01 ms

𝑛1, 𝑛0, and k for each case were listed with the figures. For the 𝛽-lactoglobulin

data, given in Figure 3, k arrived at from the curve fit of Figure 4 was used.

induction period. For the case of 𝛽-lactoglobulin given in Fig-

ure 3, we see that the value for the ratio is very near the max-

imum value allowed by Equation (13) and thus predicts a rel-

atively short induction period. This is consistent with what

was reported for this growth run; the solution became cloudy

after preparation, and protein aggregates formed quickly after

sample preparation.10

An estimate can now be given for the nucleation time 𝑡𝑛.

We let this be the time when the homogeneous nuclei density

equals 1.0 cm−3. Using the far right term of Equation (14),

one arrives at

𝑡𝑛 =
1
𝑘
ln
(
𝑛0 + 1 + 𝑛0∕𝑛1

𝑛0 − 1

)
≈ 1

𝑘
ln
(
1 + 1∕𝑛1

)
. (18)

Using Equations (13) and (18), induction periods and nucle-

ation times are estimated for the cases depicted in Figures 1–3.

These data are listed in Table 1.

4 CONCLUSION

In this report, it has been shown how three separate theoret-

ical schemes lead to sigmoidal behavior for the kinetics of

crystal nucleation from solution. This result gives credence

to the suggestion of Nanev and Tonchev7 for the possibility

of there being a universal behavior for the kinetics of nucle-

ation in organic and inorganic systems. Assuming this type

behavior, the resulting expression for n versus t should then

encompass details for two-step and homogeneous nucleation

simultaneously. By separating the expression into two terms,

it is proposed that one gives the two-step process whereas

the other describes homogeneous activity. This in turn pre-

dicts that two-step associates grow around seed nuclei that

are already present or are formed immediately after solution

preparation.

The total associate volume grows during the initial phase

of the batch run and then dissipates as their nuclei and related

material are transferred either directly or indirectly into crys-

tals growing from homogeneous nuclei. Experimental evi-

dence for the transfer of matter from a solute-rich associate

directly into a growing protein crystal has been reported for 𝛽-

lactoglobulin,10 lysozyme,26,35 and phosphoglucomatase.31

Additionally, recent work by Allahyarov et al. provides

evidence for a similar type of behavior with heterogeneous
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seeds which are present at the start of the crystallization

process.36

The sigmoid expression is compared with three different

protein batch crystal growth runs. The results indicate that

two-step activity increases with increasing initial supersatu-

ration or increasing salt concentration. Other reports from the

literature suggest that two-step activity also increases with

decreasing temperature.26,28 The value for the rate constant

k also likely depends upon initial supersaturation, salt con-

centration, and temperature. However, an interesting conse-

quence of Equations (6) and (13) is that as 𝑛1 → 0 nuclei

are not predicted to form for any k and the induction period

becomes infinite.

It should be noted that the crystallization experiments stud-

ied here were likely performed such that concentrations and/or

temperature placed the process near a liquid-liquid phase

boundary—often a situation conducive to the protein crystal

growth process. Therefore, the trends suggested above should

be understood in light of this fact.

A known expression for the induction period was rewritten

in terms of the initial and final nuclei densities. It predicts

that as the ratio of initial to final nuclei density increases the

induction time decreases and reaches zero when the ratio is

≈0.119.
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APPENDIX
Here a simple high-level kinetic reaction model is given for

the formation of nuclei in a supersaturated protein solution.

The scheme leads to the logistic differential equation and thus

a sigmoidal description of the nuclei density versus time.

Let a critical nucleus be given by N and a protein monomer

by P. Let the number of monomers in the nucleus be i. Then,

consider the following two-step process:

𝑃𝑖−1 + 𝑃 ←→ 𝑁 (homogeneous nucleation) (i)

𝑁 +𝑁 ←→ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (initial seed nuclei consumption) (ii)

Reaction (i) gives

𝑑[𝑁]
𝑑𝑡

= 𝑘1[𝑃𝑖−1][𝑃 ]. (A1)

Reaction (ii) leads to

−𝑑[𝑁]
𝑑𝑡

= 𝑘2[𝑁]2. (A2)

So the total nucleation rate is then

𝑑[𝑁]
𝑑𝑡

= 𝑘1[𝑃𝑖−1][𝑃 ] − 𝑘2[𝑁]2. (A3)

We use the approximation that [𝑃𝑖−1] ≈ [𝑁] and also assume

that [𝑃 ] = [𝑃 ]0 − 𝑎[𝑁], where [𝑃 ]0 is the initial protein con-

centration and a is a positive constant. Making these substitu-

tions into Equation (A3), we arrive at

𝑑[𝑁]
𝑑𝑡

= 𝑘1[𝑃 ]0[𝑁] − (𝑎𝑘1 + 𝑘2)[𝑁]2. (A4)

With the substitutions 𝑘 = 𝑘1[𝑃 ]0 and 𝜔 = (𝑎𝑘1 + 𝑘2)∕
𝑘1[𝑃 ]0, we arrive at the Nanev-Tonchev equation for the rate

of critical nuclei density.

𝑑[𝑁]
𝑑𝑡

= 𝑘[𝑁] − 𝑘𝜔[𝑁]2. (A5)
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