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ABSTRACT

Using a recently reported method for the statistical representation of gaseous diffusion within a cylindrical pore, we report here on an analy-
sis of situations that describe fast diffusion within carbon nanotubes. It is proposed that if gaseous flow properties of the tube, in the highly
rarefied situation, are due to there being only specular particle–wall reflections, then these particles can transit the tube via self-diffusion.
On comparing this self-diffusive flux with Knudsen transport diffusion, our model predicts that enhanced diffusion is indeed possible in the
carbon nanotube. Depending upon the statistical nature of the particle–wall scattering phenomenon, the enhancements are predicted be
three to four times that of classical transport diffusion and, for certain conditions, the enhancement factor can be greater than 4.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031023

I. INTRODUCTION

An important molecular dynamics (MD) study in 2002 pre-
dicted that the flow of gaseous particles through carbon nanotubes
could be three to four times greater than through zeolite based
nanotube systems.1 This flow enhancement phenomenon has been
referred to as fast diffusion. Holt et al.2 have reported that for the
airflow through carbon nanotube membranes, a flow enhancement
of 16–120 times that of the classical Knudsen diffusion prediction
occurred. Reliable and well characterized carbon nanotube mem-
branes have since been fabricated by many groups.3–8

It has been proposed that this enhanced diffusion within
carbon nanotubes is due primarily to the frictionless nature of the
pore wall.9–11 That is, the gaseous particle undergoes primarily
specular interactions with the inner surface of the pore.

Recently, Colson and Barlow reported on a statistical method
whereby the gaseous flux and a Fickian diffusion coefficient, can be
estimated for the gaseous flow within a nanotube.12 This method
conveniently models the flow in terms of a probability distribution
for scattering path lengths. In this paper, we report on work where
this model is used to examine the nature of the fast diffusion

phenomenon by comparing the flux through a cylindrical carbon
nanotube with an identically shaped non-carbon nanotube.

Assuming that fast diffusion in carbon nanotubes is due to par-
ticles scattering specularly from the pore walls, we consider here the
case where diffusion is solely that of self-diffusion with no concentra-
tion gradient present. That is, mass transmission within the nano-
tube can behave in a similar fashion to that of light transmission in a
fiber optic cable; the inherit natural motion of the particle generates
transport within the conduit. Therefore, propagation is not due to a
mass density gradient but rather due to the Brownian thermal
motion that initially propelled the particle into the nanotube.

We derive expressions for the carbon nanotube flux, in the
highly rarefied situation, for the self-diffusion case. The non-carbon
based nanotube system is assumed to exhibit the classical Knudsen
transport diffusion, where the particle–wall interaction is perfectly
diffuse and a concentration gradient is present in the nanotube.13

The issue of flow enhancement in carbon based systems is
studied by comparing the ratio of the flux in the carbon nanotube to
that of a non-carbon system. We consider two cases. In the first case,
the distribution for scattering path lengths in both systems is given
by a Gaussian distribution. In the second case, the path length
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spectrum for the carbon nanotube is assumed to be determined by
the trajectory of the particles upon entry while in the non-carbon
system diffuse scattering conditions are modeled by a cosine square
law.

When using a Gaussian model for the path length distribu-
tion, we are able to examine what effect the standard deviation has
on the flow enhancement. This analysis reveals a flow enhancement
of three to four as the standard deviation broadens, which agrees
with the above mentioned MD study.1 But for a distribution domi-
nated by short path lengths, an anomalous region develops where
the enhancement factor strongly diverges to higher values. In the
second case, where the path length distribution functions are cus-
tomized for each nanotube, we are led to a result that gives the
enhancement factor in terms of the nanotube length. Here, for
lengths typical of those reported for carbon nanotubes, the
enhancement ranges from a factor of 3 to 6.

II. FLUX ENHANCEMENT: THE GAUSSIAN
DISTRIBUTION

In the case of the highly rarefied regime, where particle–
particle interactions are negligible, Eq. (19) of Ref. 12 expresses the
flux, J , in terms of an integral

J ¼ ξ

ð1
zo

[n(2zo � z)� n(z)]C(z, zo)dz, (1)

where ξ is the particle–wall collision frequency, n is the gaseous
density within the tube, and C is the cumulative probability distri-
bution function for particle–wall axial scattering path lengths. The
axial coordinate in the tube is z. The density n depends solely on
the axial coordinate z. A flux plane, having the circular cross
section of the tube, is located at zo. The integral includes contribu-
tions from both left and right moving particles. Particles are
assumed to be characterized as moving at the same mean velocity
and thus with identical translational energies.

If the flux plane is placed at the origin of the coordinate
system, then C is related to the normalized probability function P
for axial scattering path lengths λ as

C ¼
ð1
z
P(λ)dλ: (2)

More generally, C would be a two-part piecewise expression;
one for the right moving flux within the pore and the other for the
leftward. However, if both flux contributions are assumed to obey
the same distribution function, then this symmetry leads to C
being given by one expression as in Eq. (1).12

In this study, we assume that there is gas to the left side of the
porous membrane, while at the opposite end, there is vacuum. This
situation is depicted below in Fig. 1.

In the self-diffusion case, a particle will enter the pore on the
left due to the Brownian thermal motion, undergo a series of spec-
ular reflections, and exit at the right end of the pore.

Once the steady-state self-diffusive situation is reached, flow
through the pore will occur with a constant gas density of no
within the pore.

Let the flux from the specular self-diffusion situation be given
by J. Since there is only rightward moving flux, we have that
n(2zo � z) ¼ 0 in Eq. (1) leading to

J ¼ �ξ

ð1
zo

n(zo)C(z, zo)dz: (3)

Here, n ¼ no, and the flux plane is set to be at the right end of the
pore. Setting n(zo) ¼ no, using Eq. (2) for C, and considering a
pore of length l transforms Eq. (3) into

J ¼ �ξno

ðl
0

ð1
z
P(λ)dλ

� �
dz: (4)

Equation (1) can also be used to give the flux J 0 for Knudsen
transport diffusion in the non-carbon nanotube. In this case, due
to diffuse scattering, there will be right and leftward moving com-
ponents of the flux so that both of the density terms, within the
square brackets of Eq. (1), survive. Here, n ¼ (dn=dz)z þ no with
dn=dz being constant, no being the density at the flux plane, and l
being the membrane thickness. Using this expression for the
density in Eq. (1), Colson and Barlow derive Eq. (40) in Ref. 12 for
a nanotube of finite length with the flux plane placed at the center
of the tube which is

J 0 ¼ �2ξ
dn
dz

ðl=2
0

z
ð1
z
P(λ)dλ

� �
dz: (5)

Now, we consider the ratio of specular self-diffusion to
Knudsen transport diffusion,

J
J 0
¼ �ξno

Ð l
0

Ð1
z P(λ)dλ

� �
dz

�2ξ dn
dz

Ð l=2
0 z

Ð1
z P(λ)dλ

� �
dz

: (6)

The two nanotubes we compare have identical diameters so that

FIG. 1. Depiction of a carbon nanotube in a membrane. The gas density on the
left is no while on the right side n � 0. Specular reflection leads to the
self-diffusive flux J which flows from left to right in the figure. Since there is no
leftward moving component of the flux, the flux plane located at zo, is placed at
the right end of the pore.
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the collision frequencies in Eqs. (4) and (5) are assumed to be
equivalent. Letting dn=dz ¼ no=l, the above reduces to

J
J 0
¼ l

Ð l
0

Ð1
z P(λ)dλ

� �
dz

2
Ð l=2
0 z

Ð1
z P(λ)dλ

� �
dz

: (7)

As a model for P, we consider the Gaussian distribution
normalized over half space with standard deviation σ,

P(λ) ¼ 2ffiffiffiffiffi
2π

p
σ
e�

λ2

2σ2 : (8)

Inserting Eq. (8) into Eq. (7) and computing the integrals, we
arrive at

J
J 0
¼

4l2 þ 4lσ
ffiffi
2
π

q
1� e�l2=2σ2� �� 4l2erf lffiffi

2
p

σ

h i

l2 � lσ
ffiffi
8
π

q
e�l2=8σ2 � l2 � 4σ2ð Þerf lffiffi

2
p

σ

h i , (9)

where erf denotes the error function. Now, the ratio can be studied
as a function of σ. Setting l ¼ 1, σ is given in the units of the pore
length l.

In Fig. 2, a plot of Eq. (9) is shown. Using a dashed vertical
line, we divide the space into two regions. Region II we label as the
fast diffusion region. In this region, enhancements over transport
Knudsen diffusion of three to four times are possible. In fact, one
finds that limσ!1J=J 0 ¼ 4. Values in this region are consistent with
the results reported in Ref. 1.

We label region I the anomalous fast diffusion region. Here,
the ratio J=J 0 can assume any positive value greater than 3.
However, this is due to the fact that Knudsen transport diffusion
falls to zero faster than the self-diffusion. For either diffusion mode
in this region, the flux would be limited.

The regions are defined by the relation between the standard
deviation of the scattering path length and the pore length. From
Fig. 2, we see that when σ , 0:4l, the ratio J=J 0 begins to climb

considerably. The situation would be that the path length spectrum
is dominated by short axial path lengths. In region II where
σ . 0:4l, the path length spectrum becomes more spread out, and
thus, there are increasingly more long scattering path lengths
present in the spectrum. More specifically, when the enhancement
factor is 3, and σ � 0:4l, the majority of the particles undergo mul-
tiple wall collisions within the pore. As the enhancement factor
increases toward 4, an increasing fraction of the particles transits
the tube having only one particle–wall collision.

To consider region I more closely, a plot showing each flux
from Eq. (9) individually is given in Fig. 3. Here, it can be seen that
as the standard deviation falls to 0.1 times the pore length, the
transport diffusion flux essentially vanishes, while the self-diffusion
flux remains finite thus leading to the diverging nature of the ratio
within region I.

III. FLUX ENHANCEMENT: CUSTOM DISTRIBUTIONS

In Sec. II, it was assumed that scattering in both nanotubes
could be described by the same path length distribution function.
However, since scattering within the carbon nanotube is taken to
be specular in nature, we will in this section let the distribution
function for scattering path lengths in the carbon nanotube to be
based upon the trajectory of the particles upon tube entry. For the
non-carbon based system, the distribution will be given the classic
cosine squared dependence often used to model diffuse scattering.

As in Sec. II, a self-diffusion model will be used to describe
the flux for the carbon nanotube, while for the non-carbon system,
transport diffusion will be the transfer mode.

Since the carbon nanotube is taken to yield only specular
interactions, we will assume that the path length distribution is
determined by the trajectory of the particle upon entry into the
tube. Following the work by Turner et al.,14 where the trajectories
of atoms sputtered from one flat plate to another were studied, the
normalized distribution upon entry is taken to be proportional to
cos θ sin θ, where θ is the angle from the axial of the tube as shown
in Fig. 4(a). Here, we will use a more mathematically convenient
form of this distribution that retains the main features of the above,

FIG. 2. A plot of the ratio of fluxes given by Eq. (9). The vertical dashed line
divides the ratio of fluxes into two regions: II: fast diffusion and I: anomalous
fast diffusion. σ has units of pore length l.

FIG. 3. Normalized flux vs standard deviation in each nanotube for the situation
depicted in Fig. 2. The upper curve represents the estimated flux in the carbon
nanotube via self-diffusion. The lower curve gives the flux through the non-
carbon system due to transport diffusion. σ has units of pore length l.
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namely, we employ [ cos θ sin θ]2. Writing this in terms of the
distance λ leads to

cos2½arctan (d=λ)] sin2½arctan (d=λ)], (10)

where d is the pore diameter. Normalizing this over half space and
using a trigonometric identity leads to

P1(λ) ¼ πd3

4 1þ d2
λ2

� �2
λ2

: (11)

For the case of non-specular diffusion, it is assumed that the
path length spectrum is determined by the particle–wall interaction
and is assigned a cosine square law. Referring to Fig. 4(b), one
finds that in this case cos2 [ arctan (λ=d)]. Normalizing over half

space and using a trigonometric identity yields

P2(λ) ¼ dπ
2

1

1þ λ2

d2

� �
2
4

3
5: (12)

The ratio J=J 0 can now be assembled. J 0 is proportional to the
gaseous density gradient as in Sec. II, while J occurs at the constant
density no. Nanotube diameters and collision frequencies are
assumed equivalent. After canceling common factors, the flux ratio
is assembled as

J
J 0
¼

Ð l
0

Ð1
z P1(λ)dλ

� �
dz

(2=l)
Ð l=2
0 z

Ð1
z P2(λ)dλ

� �
dz

: (13)

Upon using Eqs. (11) and (12) in Eq. (13) the inner integrals can
be computed analytically leading to

J
J 0
¼

Ð l
0
d3π
16

π
d þ 2z

d2þz2 � 2
d arctan (z=d)

h i
dz

(2=l)
Ð l=2
0 z d3π

4
π
d � 2

d arctan (z=d)
	 


dz
: (14)

The remaining integrals in Eq. (14) are computed numerically.
We let d ¼ 1 and give l units of pore diameter. A plot of the

result is shown in Fig. 5. Here, we see a clear enhancement of the
flow through the carbon based system over the traditional nano-
tube. The predicted flow enhancement continues to improve as the
ratio l=d increases.

Considering the report of the flow enhancement of air
through carbon nanotubes by Hotl et al.,2 a range of multiples of
the Knudsen prediction were given for three different membranes.
Each of the three membranes used in this report was listed as
having an identical range of pore diameters which average to
1.65 nm. Then, using the three membrane thicknesses listed, we are
able to compute the ratio l=d for each of the Holt cases. This leads
to l=d values of 1212, 1697, and 1818. Equation (14) predicts
enhancements in the range of approximately 3.5 to 4 for this
range of l=d.

FIG. 5. Plot of Eq. (14) with l having units of pore diameter.

FIG. 4. Depiction of scattering events in nanotubes. (a) Specular reflection in
the carbon nanotube leads to the scattering path length being determined by
the entry angle of the particle as shown and being assigned a cosine-sine entry
angle law. (b) For the non-carbon nanotube, the scattering path length is gov-
erned by diffuse reflection modeled by a cosine squared law with the angle
defined as shown.
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IV. CONCLUSION

In this report, it is demonstrated that a recently reported stat-
istical model for gaseous flux in nanotubes can be used to arrive at
analytic expressions that are used to predict and study the flow
enhancement in carbon nanotubes. Results obtained are similar to
those generated by complicated and time consuming MD simula-
tions. This model gives the flux in terms of a probability distribu-
tion for scattering path lengths. Assuming that carbon nanotubes
exhibit complete lack of friction for particle–wall interactions, the
gaseous flow within this system is modeled as self-diffusion. The
non-carbon nanotube system is assumed to exhibit perfectly diffuse
transport style diffusion. To study the issue of the flow enhance-
ment, the ratio of these two flux types is considered for two cases.

In the first case, both flux types are given a Gaussian scatter-
ing path length distribution. The flow enhancement is predicted to
occur, and the magnitude of this enhancement is shown to vary
with the standard deviation of the path length spectrum. As the
standard deviation begins to broaden, and the distribution thus
contains longer scattering path lengths, the enhancement factor
goes from 3 asymptotically toward the value of 4. This result is
consistent with results of the MD studies of Skoulidas et al.1 on
carbon nanotubes. Their simulations showed a self-diffusion
enhancement over that of non-carbon based systems by a factor of 3
to 4 in rarefied situations for the gases CH4 and H2. It is important
to note that in this MD study the carbon nanotube was compared to
a zeolite Si2O based system. Therefore, the flow enhancement pre-
dicted was for carbon nanotubes relative to zeolite pores.
Additionally, self-diffusion and transport diffusion was considered in
both materials. In the highly rarefied regime, the flow enhancements
predicted for the carbon system over the zeolite appeared when self-
diffusion was considered in both and also when transport diffusion
was the transport mode in both. In this work, the enhancement was
revealed when the carbon system had a self-diffusion flux while the
non-carbon nanotube experienced transport diffusion but not when
both systems had a transport diffusive flux.

As the distribution becomes dominated by increasingly
shorter path lengths, the flow region enters an anomalous region
where the enhancement diverges to increasingly larger values
greater than 3. The enhancement values of 16–120 reported by
Holt et al.2 for airflow through carbon nanotubes could have
occurred in this region. However, additional investigation is neces-
sary in order to clarify such a speculation.

Additionally, we considered the case where the flux in each
nanotube had its own peculiar path length spectrum. For the
carbon nanotube with specular interactions, we modeled the scat-
tering path length spectrum as being entirely determined by the
trajectory of particles entering the pore opening. For the non-

carbon system with diffuse scattering, a cosine squared distribution
is used to describe the scattering path length probability.
Expressions for the flux in each case are developed and their ratios
are investigated. In this case, the flow enhancement is given in
terms of the pore length. For pores of the length used in
Refs. 1 and 2, this method yields enhancement factors of 3 to 5.
However, this result predicts that as the nanopore length increases
beyond typical membrane thicknesses, the enhancement factor
grows indefinitely. This is due to the fact that even though the
transport flow in the non-carbon based system approaches a cons-
tant value for the tube of the infinite length, the self-diffusion flow
in the carbon based tube continues to increase.

It is important to note that any effect due to the absorption of
the gaseous species within the membrane was not considered in
this study. Results from Ref. 1 seem to suggest that absorption of
the gaseous species within the nanotube decreases the magnitude
of gaseous self-diffusion. Thus, it is possible that gas absorption
destroys the specular nature of the particle–wall collision within the
carbon nanotube.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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